Full listings

$\mathbf{G0.0} + 0.0$		Sgr A Eas
RA: $17^{h}42^{m}33^{s}$	1-GHz flux/Jy: 100?	$\mathbf{Size}/\mathbf{arcmin:} 3.5 imes 2.5$
Dec: $-28^{\circ}59'$	Spectral index: 0.8?	Type: S
Radio: Non-thermal shell, in References:	complex region, interacting with molect	ular material to the west.
Ekers et al. 1983, A&A, 122, 143. V Pedlar et al. 1989, ApJ, 342, 769. V Mezger et al. 1989, A&A, 209, 337. Ho et al. 1991, Nat, 350, 309. VLA Anantharamaiah et al. 1991, MNRA Serabyn et al. 1992, ApJ, 395, 166. Gray 1994, MNRAS, 270, 835. MOS Yusef-Zadeh & Mehringer 1995, Ap.	LA at 1.4 GHz and 5 GHz (both $5'' \times 8''$), $S($ LA at 332 MHz (12"), 1.4 GHz (1".3 $\times 2''.5$) Nearby molecular material. of NH ₃ emission from surroundings. LS, 249, 262. VLA at 330 MHz (17" $\times 33''$). Nearby molecular material. ST at 843 MHz (43" $\times 88''$). J, 452, L37. VLA of nearby H ₂ O masers.	1.4) = 77, $S(5.0) = 31$. and 5 GHz (1".3 × 2".5).
G0.9 + 0.1		
RA: $17^{h}44^{m}12^{s}$ Dec: $-28^{\circ}08'$	1-GHz flux/Jy: 18? Spectral index: varies	Size/arcmin: 8 Type: C
Radio: Flat spectrum core wi X-ray: Possibly detected.	thin steep spectrum shell.	
References: Helfand & Becker 1987, ApJ, 314, 2 Gray 1994, MNRAS, 270, 835. MOS	03. VLA at 1.4 and 5 GHz, and IPC observat: T at 843 MHz $(43'' \times 91'')$.	ions.
G1.0 – 0.1		
RA: $17^{h}46^{m}20^{s}$	1-GHz flux/Jy: 15?	Size/arcmin: 8
Dec: $-28^{\circ}25'$	Spectral index: 0.6?	Type: S
Has been called G1.05–0.1.		
Radio: Incomplete shell, to th	ne S of Sgr D.	
References: Downes et al. 1979, A&AS, 35, 1. R Anantharamaiah et al. 1991, MNRA Liszt 1992, ApJS, 82, 495. VLA at 1 Gray 1994, MNRAS, 270, 835. MOS	eview of flux densities. LS, 249, 262. VLA at 330 MHz (64" × 100" : 5 L.6 GHz (13" × 23"). T at 843 MHz (43" × 91").	5 = 12.3).
G1.4 – 0.1		
RA: $17^{h}46^{m}30^{s}$ Dec: $-27^{\circ}45'$	1-GHz flux/Jy: 2? Spectral index: ?	Size/arcmin: 10 Type: S
Radio: Shell, brightest in E.		
References: Gray 1994, MNRAS, 270, 847. MOS	T at 843 MHz $(43'' \times 92'' : S = 2)$.	
G1.9 + 0.3		
RA: $17^{h}45^{m}37^{s}$ Dec: $-27^{\circ}09'$	1-GHz flux/Jy: 0.6 Spectral index: 0.7	Size/arcmin: 1.2 Type: S
Radio: Shell, brighter to the . References: Green & Gull 1984, Nat, 312, 527. V Gray 1994, MNRAS, 270, 835. MOS	N. VLA at 5 GHz $(4''.4 \times 2'')$. T at 843 MHz $(43'' \times 94'')$.	

${f G3.7-0.2}$		
RA: $17^{h}52^{m}20^{s}$ Dec: $-25^{\circ}50'$	1-GHz flux/Jy: 3? Spectral index: ?	Size/arcmin: 11 × 14 Type: S
Radio: Double arc. References: Gray 1994, MNRAS, 270, 847. MOS	T at 843 MHz (43'' \times 99'' : $S = 2.4$).	
G3.8 + 0.3		
RA: $17^{h}49^{m}50^{s}$ Dec: $-25^{\circ}27'$	1-GHz flux/Jy: 4? Spectral index: ?	Size/arcmin: 18 Type: S?
Radio: Incomplete shell. References: Gray 1994, MNRAS, 270, 847. MOS	T at 843 MHz (43" × 100" : $S = 3.5$).	
G4.2 - 3.5		
RA: $18^{h}05^{m}45^{s}$ Dec: $-27^{\circ}04'$	1-GHz flux/Jy: 3.2? Spectral index: 0.6?	Size/arcmin: 28 Type: S
References: Reich <i>et al.</i> 1988, in SNRISM, p293 Reich <i>et al.</i> 1990, A&AS, 85, 633. E	Summary of parameters. ffelsberg 100-m at 2.7 GHz (4'.3).	
${f G4.5+6.8}$		Kepler, SN1604, 3C358
RA: $17^{h}27^{m}42^{s}$ Dec: $-21^{\circ}27'$	1-GHz flux/Jy: 19 Spectral index: 0.64	Size/arcmin: 3 Type: S
This is the remnant of Kepler's	SN of AD1604.	
Radio: Incomplete shell, brigh Optical: Faint filaments. X-ray: Shell, brighter to the N	ter to the N. N.	
Distance: Historical observati References: van den Bergh & Kamper 1977, Ap Leibowitz & Danziger 1983, MNRAS Danziger & Goss 1980, MNRAS, 196 White & Long 1983, ApJ, 264, 196. Matsui et al. 1984, ApJ, 287, 295. V Dickel et al. 1988, ApJ, 330, 254. VI Smith et al. 1989, ApJ, 347, 925. EX Hatsukade et al. 1990, PASJ, 42, 27 Blair et al. 1991, ApJ, 366, 484. Op Bandiera & van den Bergh 1991, Ap van den Bergh 1991, PASP, 103, 194 Predehl & Schmitt 1995, A&A, 293,	ons indicate about 4.4 kpc. , 218, 617. Optical proper motions. 3, 204, 273. Optical spectra. 0, 47P. Revision of distance. IPC observations. LA at 1.4 (2".5 × 3".2) and 5 GHz (3".2 × 4". LA at 1.4 (1".2 × 2".3) and 5 GHz (0".6 × 1".0 COSAT observations. 0. X-ray spectrum. iccal imaging and spectroscopy. J, 374, 186. Optical changes. 1. Optical imaging. 889. ROSAT of dust scattered halo.	8) and HRI map (5″).)) at two epochs.

G5.2 - 2.6

RA: $18^{h}04^{m}25^{s}$ **Dec:** $-25^{\circ}45'$

1-GHz flux/Jy: 2.6? Spectral index: 0.6? Size/arcmin: 18 Type: S

Radio: Poorly resolved shell.

References:

Reich et al. 1988, in SNRISM, p293. Summary of parameters. Reich et al. 1990, A&AS, 85, 633. Effelsberg 100-m at 2.7 GHz (4'.3).

Milne 56

G5.4 - 1.2

$RA: 17^{h}59^{m}00^{s}$	1-GHz flux/Jy: 35?	Size/arcmin: 35
Dec: $-24^{\circ}55'$	Spectral index: 0.2?	Type: C?

Part been called G5.3-1.0. Has been suggested that this is not a SNR.

Radio: Incomplete shell, including wide "v" of emission to east with small flat-spectrum source at apex. **Optical:** Detected.

Distance: HI absorption suggests > 4.3 kpc.

Point sources: Pulsar associated with flat spectrum source.

References: Clark et al. 1975, AuJPA, 37, 75. Molonglo at 408 MHz (3': S = 38). Becker & Kundu 1975, AJ, 80, 679. NRAO 140-ft at 10.6 GHz (3'). Dickel & Milne 1976, AuJPh, 29, 435. Comparison of earlier Parkes 64-m maps at 2.7 GHz (8'.4) and 5 GHz (4'.4). Angerhofer et al. 1977, A&A, 55, 11. NRAO 140-ft at 5 GHz (6'.8: $S = 21.9 \pm 2.4$). Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Zealey et al. 1979, A&AS, 38, 39. Optical detection. Becker & Helfand 1985, Nat, 313, 115. VLA at 1.4 and 5 GHz. Suggest it is not SNR, see Helfand & Becker 1985, Nat, 313, 118. Manchester et al. 1985, MNRAS, 212, 975. Pulsar detection. Caswell et al. 1987, MNRAS, 225, 329. MOST at 843 MHz $(42'' \times 110'')$. Frail & Kulkarni 1991, Nat, 352, 785. Pulsar and remnant association. Manchester et al. 1991, MNRAS, 253, 7P. Pulsar and remnant association. Milne et al. 1992, MNRAS, 255, 707. Parkes 64-m at 4.75 (4'.5: $S = 30.8 \pm 2.1$) and 8.4 GHz (3': $S = 24 \pm 3$), including polarization. Kassim 1992, AJ, 103, 943. VLA at 327 MHz $(3'.0 \times 4'.9 : S = 38)$.

Frail et al. 1994, AJ, 107, 1120. VLA at 327 MHz (68" × 73"), plus HI absorption.

G5.9 + 3.1

RA: $17^{h}44^{m}20^{s}$ **Dec:** $-22^{\circ}15'$

1-GHz flux/Jy: 3.3? Spectral index: 0.4? Size/arcmin: 20 Type: S

Radio: Asymmetric shell.

References: Reich et al. 1988, in SNRISM, p293. Effelsberg 100-m at 2.7 GHz (4'.3).

G6.1 + 1.2

RA: 17^h51^m55^s **Dec:** $-23^{\circ}05'$

1-GHz flux/Jy: 4.0? Spectral index: 0.3? Size/arcmin: 30×26 Type: F

Has been called G6.1+1.15.

Radio: Faint, diffuse emission.

References:

Reich et al. 1988, in SNRISM, p293. Summary of parameters. Reich et al. 1990, A&AS, 85, 633. Effelsberg 100-m at 2.7 GHz (4'.3).

Version VI: 1996 August

${f G6.4-0.1}$		W28
RA: $17^{h}57^{m}30^{s}$	1-GHz flux/Jy: 310	Size/arcmin: 42
Dec: $-23^{\circ}25'$	Spectral index: varies	Туре: С
Has been called G6.6–0.2.		
Radio: Several non-thermal s	ources in a ring, with flat spectrum core.	
Optical: Filaments.		
X-ray: Diffuse emission from	most of the remnant.	
Point sources: Young pulsar	near edge of remnant.	
Distance: Uncertain mean op	tical velocity indicates 3.5–4 kpc.	
References: Kundu & Velusamy 1972, A&A, 20 van den Bergh et al. 1973, ApJS, 24 Dickel & Milne 1976, AuJPh, 29, 43 Dopita et al. 1977, ApJ, 214, 179, S Altenhoff et al. 1979, A&AS, 35, 23 Lozinskaya 1981, SvAL, 7, 17. Mear Andrews et al. 1983, ApJ, 266, 684 image of central region. Bohigas et al. 1983, RMxAA, 8, 154 Odenwald et al. 1984, ApJ, 279, 166 Andrews et al. 1985, AJ, 90, 310. V Long et al. 1991, ApJ, 373, 567. IP4 Kassim 1992, AJ, 103, 943. VLA at Kaspi et al. 1993, ApJ, 409, L57. P- Frail et al. 1993, Nat, 365, 136. VL Frail et al. 1994, ApJ, 424, L111. V	 237. NRAO 140-ft at 10 GHz (3'). 3, 19. Optical. 35. Comparison of earlier Parkes 64-m maps at 2.7 ome optical line ratios. Effelsberg 100-m at 4.9 GHz (2'.6). a optical velocity. VLA at 1.4 GHz (8") 4.9 GHz (3") and 15 GH Optical spectra. Nearby IR source. LA of central component. C and optical observations. 327 MHz (3'.1 × 4'.4 : S = 660). alsar association. A at 327 MHz (smoothed to 65"), plus pulsar associated OH masers. 	GHz (8'.4) and 5 GHz (4'.4). Iz (1'') of central region only, plus HRI ociation.

Frail et al. 1996, AJ, 111, 1651. OH maser emission.

G6.4 + 4.0

RA: $17^{h}42^{m}10^{s}$	1-GHz flux/Jy: 1.3?	Size/arcmin: 31
Dec: $-21^{\circ}20'$	Spectral index: 0.4?	Type: S

Radio: Faint asymmetric shell.

References:

Reich et al. 1988, in SNRISM, p293. Effelsberg 100-m at 2.7 GHz (4'.3).

${ m G7.7}-{ m 3.7}$		1814 - 24
RA: $18^{h}14^{m}20^{s}$	1-GHz flux/Jy: 11	Size/arcmin: 22
Dec: $-24^{\circ}05'$	Spectral index: 0.32	Type: S

Radio: Shell, with high polarization.

References:

Dickel & Milne 1976, AuJPh, 29, 435. Comparison of earlier Parkes 64-m maps at 2.7 GHz (8'.4) and 5 GHz (4'.4). Milne *et al.* 1986, MNRAS, 223, 487. MOST at 843 MHz (44'' × 108'') and Parkes 64-m at 8.4 GHz (3': $S = 4.6 \pm 0.5$), with polarization, plus review of flux densities.

Dubner et al. 1996, AJ, 111, 1304. VLA at 1.4 GHz ($70'' \times 35'': S = 9.9 \pm 0.1$), including polarization.

G8.7 - 5.0

RA: $18^{h}21^{m}05^{s}$ **Dec:** -23°50′

1-GHz flux/Jy: 4.4 Spectral index: 0.3 Size/arcmin: 26 Type: S

Radio: Asymmetric shell.

References:

Reich et al. 1988, in SNRISM, p293. Summary of parameters. Reich et al. 1990, A&AS, 85, 633. Effelsberg 100-m at 2.7 GHz (4'.3).

${ m G8.7} - 0.1$

RA: $18^{h}02^{m}35^{s}$	1-GHz flux/Jy: 80
Dec: $-21^{\circ}25'$	Spectral index: 0.5

(W30) Size/arcmin: 45 Type: S?

Radio: Clumpy non-thermal shell, with low-frequency turnover.

X-ray: Northern edge detected.

Point sources: Pulsar inside western edge.

References:

Odegard 1986, AJ, 92, 1372. TPT at 57.5 MHz $(7'.2 \times 9'.7: S = 190 \pm 50)$.

Kassim & Weiler 1990, Nat, 343, 146. VLA at 327 MHz $(3'.0 \times 3'.7)$.

Kassim & Weiler 1990, ApJ, 360, 184. VLA at 327 MHz $(2'.8 \times 4'.1 : S = 129 \pm 11)$, and part at 1.4 GHz $(0'.9 \times 1'.8)$, plus review of flux densities.

Frail et al. 1994, AJ, 107, 1120. VLA at 327 MHz $(37'' \times 55'')$.

Finley & Ögelman 1994, ApJ, 434, L25. ROSAT observations, including pulsar.

G9.8 + 0.6

RA: $18^{h}02^{m}10^{s}$ **Dec:** $-20^{\circ}14'$ 1-GHz flux/Jy: 3.9 Spectral index: 0.5 Size/arcmin: 12 Type: S

Radio: Asymmetric shell.

References:

Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Caswell 1983, MNRAS, 204, 833. Molonglo at 408 MHz (3' : $S = 5.8 \pm 0.6$). Dubner et al. 1993, AJ, 105, 2251. VLA at 1.47 GHz (41" × 63" : $S = 3.5 \pm 0.4$).

G10.0 - 0.3

RA: 18^h05^m40^s **Dec:** -20°26'

1-GHz flux/Jy: 2.9 Spectral index: 0.8 Size/arcmin: 8? Type: ?

Radio: Not well resolved.

X-ray: Detected.

Point sources: Associated with soft gamma repeater.

References:

Shaver & Goss 1970, AuJPA, 14, 133. Molonglo at 408 MHz (3') and Parkes 64-m at 5 GHz (4').

Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6).

Kulkarni & Frail 1993, Nat, 365, 33. VLA at 330 MHz (smoothed to 2') and 1.49 GHz (40" × 65"), including association with soft gamma repeater.

Sonobe et al. 1994, ApJ, 436, L23. X-ray observations.

Kulkarni et al. 1994, Nat, 368, 129. VLÅ at 1.4 GHz (31") and 8.4 GHz (5".5)

Vasisht et al. 1995, ApJ, 440, L65. Radio monitoring of core. Frail et al. 1996, AJ, 111, 1651. OH emission near remnant.

Size/arcmin: 4

Type: C

G11.2 - 0.3

RA: $18^{h}08^{m}30^{s}$	1-GHz flux/Jy: 22
Dec: $-19^{\circ}26'$	Spectral index: 0.49

Probably associated with the SN of AD386.

Radio: Symmetrical clumpy shell, possibly with flatter spectrum core.

X-ray: Shell, with hard spectrum centrally brightened region.

Distance: HI absorption indicates 5 kpc.

References:

Shaver & Goss 1970, AuJPA, 14, 133. Molonglo at 408 MHz (3') and Parkes 64-m at 5 GHz (4'). Radhakrishnan et al. 1972, ApJS, 24, 49. HI absorption. Becker & Kundu 1975, AJ, 80, 679. NRAO 140-ft at 10.6 GHz (3') Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6) Downes 1984, MNRAS, 210, 845. VLA at 1465 MHz (20" × 25") and HRI observations, with review of flux densities. Becker et al. 1985, ApJ, 296, 461. VLA at 1.4 and 5 GHz, plus HI absorption, HRI and IPC observations. Morsi & Reich 1987, A&AS, 71, 189. Effelsberg 100-m at 32 GHz $(26''.5: S = 4.04 \pm 0.24)$. Green et al. 1988, MNRAS, 231, 735. VLA at 1.4 and 5 GHz. Kassim 1992, AJ, 103, 943. VLA at 327 MHz $(3'.2 \times 4'.1 : S = 39)$. Reynolds et al. 1994, MNRAS, 271, L1. ROSAT image and spectra. Vasisht et al. 1996, ApJ, 456, L59. ASCA observations.

G11.4 - 0.1

RA: $18^{h}07^{m}50^{s}$	1-GHz flux/Jy: 6	Size/arcmin: 8
Dec: -19°06′	Spectral index: 0.5	Type: S?

Radio: Incomplete shell, possibly with central core.

References:

Clark et al. 1975, AuJPA, 37, 1. Molonglo at 408 MHz (3': S = 9.4) contaminated by sidelobes of a nearby source, and Parkes 64-m at 5 GHz (4': S = 2.8).

Angerhofer et al. 1977, A&A, 55, 11. NRAO 140-ft at 5 GHz $(6'.8: S = 2.0 \pm 0.4)$. Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Kassim 1992, AJ, 103, 943. VLA at 327 MHz $(3'.2 \times 4'.1 : S = 18)$. Dubner et al. 1993, AJ, 105, 2251. VLA at 1.47 GHz $(44'' \times 63'' : S = 5.1 \pm 0.6)$.

G12.0 - 0.1

RA: $18^{h}09^{m}15^{s}$	1-GHz flux/Jy: 3.5	Size/arcmin: 7?
Dec: -18°38′	Spectral index: 0.7	Туре: ?

Radio: Incomplete shell, defined in E only.

References:

Clark et al. 1975, AuJPA, 37, 1. Molonglo at 408 MHz (3': S = 6.6) and Parkes 64-m at 5 GHz (4': S = 1.1). Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Kassim 1992, AJ, 103, 943. VLA at 327 MHz (3'.2 × 4'.1) Dubner et al. 1993, AJ, 105, 2251. VLA at 1.47 GHz $(41'' \times 61'' : S = 0.7)$.

G13.3 - 1.3

RA: 18^h16^m30^s **Dec:** -18°01′

1-GHz flux/Jy: ? Spectral index: ? Size/arcmin: 70×40 Type: S?

Radio: Amporphous emission.

X-ray: Elongated emission.

Optical: Filaments in S.

Distance: Absorption indicates 2-4 kpc.

References:

Seward et al. 1995, ApJ, 449, 681. ROSAT detection, optical studies and observations of CO.

G13.5 + 0.2**RA**: 18^h11^m20^s **1-GHz** flux/Jy: 3.5? Size/arcmin: 5×4 **Dec:** $-17^{\circ}13'$ Spectral index: 1.0? Type: S Has been called G13.46+0.16. Radio: Elongated, incomplete shell. References: Helfand et al. 1989, ApJ, 341, 151. VLA at 5 GHz ($S = 0.65 \pm 0.05$) and 1.4 GHz ($15'': S = 2.67 \pm 0.5$). G15.1 - 1.6**RA:** $18^{h}21^{m}05^{s}$ 1-GHz flux/Jy: 5.5? Size/arcmin: 30×24 **Dec:** $-16^{\circ}36'$ Spectral index: 0.8? Type: S **Radio:** Elongated, incomplete shell. **R**eferences: Reich et al. 1988, in SNRISM, p293. Summary of parameters. Reich et al. 1990, A&AS, 85, 633. Effelsberg 100-m at 2.7 GHz (4'.3). G15.9 + 0.2**RA:** $18^{h}16^{m}00^{s}$ 1-GHz flux/Jy: 5 Size/arcmin: 7×5 **Dec:** $-15^{\circ}03'$ Spectral index: 0.6? Type: S? **Radio:** Incomplete shell, with bright concentration to the E. References: Clark et al. 1975, AuJPA, 37, 1. Molonglo at 408 MHz (3': S = 7.7) and Parkes 64-m at 5 GHz (4': S = 1.9). Angerhofer et al. 1977, A&A, 55, 11. NRAO 140-ft at 5 GHz $(6'.8: S = 1.1 \pm 0.2)$. Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Caswell et al. 1982, MNRAS, 200, 1143. FIRST at 1415 MHz (58" × 44"). Dubner et al. 1996, AJ, 111, 1304. VLA at 330 MHz $(77'' \times 61'' : S = 11.2 \pm 1.0)$, 1.4 GHz $(23'' \times 14'' : S = 3.9 \pm 0.1)$ and 4.9 GHz $(13'' \times 16'')$. G16.7 + 0.1**RA**: 18^h18^m05^s 1-GHz flux/Jy: 3.0 Size/arcmin: 4 **Dec:** $-14^{\circ}21'$ Type: C Spectral index: 0.6 Has been called G16.73+0.08. Radio: Asymmetric shell with flat-spectrum core. References: Helfand et al. 1989, ApJ, 341, 151. VLA at 5 GHz (5 : S = 0.95) and 1.4 GHz (15" : S = 2.43) and OSRT at 327 MHz (S = 5.13).G16.8 - 1.1**RA**: 18^h22^m30^s 1-GHz flux/Jy: 2?Size/arcmin: 30×24 ? **Dec:** $-14^{\circ}48'$ Spectral index: ? Type: ? Radio: Overlapping thermal and non-thermal emission, parameters uncertain. Point sources: Pulsar within boundary of non-thermal emission. **R**eferences: Reich et al. 1986, A&A, 155, 185. Effelsberg 100-m at 4.75 GHz (2'.4), plus other observations. G17.4 - 2.3**RA**: 18^h28^m05^s 1-GHz flux/Jy: 4.8? Size/arcmin: 24? **Dec:** $-14^{\circ}54'$ Spectral index: 0.8? Type: S Radio: Incomplete, poorly defined shell. **R**eferences: Reich et al. 1988, in SNRISM, p293. Summary of parameters. Reich et al. 1990, A&AS, 85, 633. Effelsberg 100-m at 2.7 GHz (4'.3).

Kes 67

Type: S

G17.8 - 2.6

RA: $18^{h}30^{m}00^{s}$ **Dec:** $-14^{\circ}41'$ 1-GHz flux/Jy: 4.0? Spectral index: 0.3?

Size/arcmin: 24 Type: S

Size/arcmin: 17×11

Radio: Well defined shell.

References:

Reich et al. 1988, in SNRISM, p293. Summary of parameters. Reich et al. 1990, A&AS, 85, 633. Effelsberg 100-m at 2.7 GHz (4'.3).

G18.8 + 0.3

RA: 18^h21^m10^s **Dec**: -12°25' 1-GHz flux/Jy: 33 Spectral index: 0.4

Has been called G18.9+0.3.

Radio: Incomplete shell, in complex region near the HII region W39.

Distance: HI absorption indicates > 9.5 kpc, and possibly < 19 kpc. References:

Willis 1973, A&A, 26, 237. NRAO 300-ft at 2.7 GHz (5': $S = 17 \pm 7$). Clark *et al.* 1975, AuJPA, 37, 75. Molonglo at 408 MHz (3': S = 38).

Caswell et al. 1975, A&A, 45, 239. Parkes HI absorption.

Dickel & Milne 1976, AuJPh, 29, 435. Comparison of earlier Parkes 64-m maps at 2.7 GHz (8'.4) and 5 GHz (4'.4).

Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6).

- Milne et al. 1989, PASAu, 8, 187. Parkes 64-m at 8.4 GHz $(3'.0: S = 12.9 \pm 1.0)$, including polarization. Kassim 1992, AJ, 103, 943. VLA at 327 MHz $(2'.9 \times 3'.5: S = 55)$.
- Dubner et al. 1996, AJ, 111, 1304. VLA at 1.4 GHz $(75'' \times 55'' : S = 29.9 \pm 0.3)$.

G18.9 - 1.1

RA : $18^{h}27^{m}00^{s}$	1-GHz flux/ Jy : 37	Size/arcmin: 33
Dec: -13°00′	Spectral index: varies	Туре: С?

Has been called G18.95-1.1 and G18.94-1.04.

Radio: Non-thermal, diffuse partially limb-brightened, with central ridge.

X-ray: Partial shell.

References:

Fürst et al. 1985, Nat, 314, 720. Effelsberg 100-m at 4.75 GHz (2'.4: S = 23.8), plus other flux densities.

Odegard 1986, AJ, 92, 1372. TPT at 57.5 MHz (7'.2 × 8' : S = 82 ± 15), plus review of flux densities.

Barnes & Turtle 1988, in SNRISM, p347. Molonglo at 408 MHz $(2'.9 \times 3'.1 : S = 58 \pm 9)$ and Parkes 64-m at 5 GHz $(4'.4 \times 4'.1 : S = 23 \pm 6)$.

Patnaik et al. 1988, Nat, 332, 136. OSRT at 327 MHz (0'.6 \times 1'.6). Fürst et al. 1989, A&A, 209, 361. Effelsberg 100-m at 4.75 GHz (2'.45 : S = 23.8) and VLA at 1.5 and 4.9 GHz (19" \times 14"),

and Effelsberg 100-m at 1.4 GHz (9') for HI.

Aschenbach et al. 1991, A&A, 246, L32. ROSAT observations.

G20.0 - 0.2

RA: 18^h25^m20^s **Dec**: -11°37'

1-GHz flux/Jy: 10 Spectral index: 0.0 Size/arcmin: 10 Type: F

Radio: Faint, filled-centre, polarized.

Point sources: OH source 20.1–0.1 is nearby.

References:

Becker & Helfand 1985, ApJ, 297, L25. VLA at 1.4 and 5 GHz (12''). Odegard 1986, AJ, 92, 1372. TPT at 57.5 MHz ($7'.2 \times 8': S = 8.5 \pm 2$), plus review of flux densities.

Size/arcmin: 1.2

Type: F

G21.5 - 0.9

RA : $18^{h}30^{m}47^{s}$	$1-GHz \ flux/Jy: 6$
Dec: $-10^{\circ}37'$	Spectral index: 0.0

Radio: Filled-centre, with high frequency turnover.

X-ray: Detected, with power-law spectrum.

Distance: HI absorption indicates 5.5 kpc.

References:

Wilson & Weiler 1976, A&A, 53, 89. WSRT at 5 GHz $(6'' \times 35'')$

Becker & Kundu 1976, ApJ, 204, 427. NRAO interferometer at 2.7 GHz (20" × 5") and 8 GHz (7" × 2"), plus review of flux densities. Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6)

Becker & Szymkowiak 1981, ApJ, 248, L23. VLA at 5 GHz (8"), and HRI and IPC observations.

Davelaar et al. 1986, ApJ, 300, L59. EXOSAT X-ray spectrum, and VLA HI observations.

Morsi & Reich 1987, A&AS, 69, 533. Effelsberg 100-m at 32 GHz $(26''.5: S = 5.64 \pm 0.29)$.

Fürst *et al.* 1988, PASJ, 40, 347. NRO array at 22.3 GHz ($4''.4 \times 7''.3$). Salter *et al.* 1989, A&A, 225, 167. Observations at 90.7 ($29''.5: S = 3.8 \pm 0.4$) and 141.9 GHz ($S = 2.5 \pm 1.2$).

Salter et al. 1989, ApJ, 338, 171. NRAO 12-m at 84.2 GHz ($S = 3.94 \pm 0.70$), plus review of flux densities.

Asaoka & Koyama 1990, PASJ, 42, 625. Ginga X-ray spectrum.

Kassim 1992, AJ, 103, 943. VLA at 327 MHz $(3'.3 \times 3'.4 : S = 9)$.

Wallace et al. 1994, A&A, 286, 565. HI of surroundings.

G21.8 - 0.6

Kes 69

Size/arcmin: 20

Type: S

RA: $18^{h}30^{m}00^{s}$ Dec: $-10^{\circ}10'$	1-GHz flux/Jy: 69 Spectral index: 0.5	
Badio: Incomplete shell.		

X-ray: Detected.

Distance: H_2CO absorption indicates > 6.3 kpc.

References:

Shaver & Goss 1970, AuJPA, 14, 133. Molonglo at 408 MHz (3') and Parkes 64-m at 5 GHz (4'). Wilson 1972, A&A, 19, 354. H₂CO absorption. Kundu et al. 1974, AJ, 79, 1332. NRAO 140-ft at 5 GHz (6') and 10 GHz (3') Velusamy & Kundu 1974, A&A, 32, 375. NRAO 300-ft et 2.7 GHz $(5': S = 42.3 \pm 4.6)$ Dickel & Milne 1976, AuJPh, 29, 435. Comparison of earlier Parkes 64-m maps at 2.7 GHz (8'.4) and 5 GHz (4'.4). Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Seward 1990, ApJS, 73, 781. IPC observations. Kassim 1992, AJ, 103, 943. VLA at 327 MHz $(3'.3 \times 3'.5 : S = 132)$.

G22.7 - 0.2

RA: $18^{h}30^{m}30^{s}$	1-GHz flux/Jy: 33	Size/arcmin: 26
Dec: $-09^{\circ} 15'$	Spectral index: 0.6	Type: S?

Radio: Non-thermal ring in complex region, overlapping G23.3-0.3. **References**:

Shaver & Goss 1970, AuJPA, 14, 133. Molonglo at 408 MHz (3') and Parkes 64-m at 5 GHz (4'). Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Kassim 1992, AJ, 103, 943. VLA at 327 MHz $(3'.3 \times 3'.4: S = 82)$.

G23.3 - 0.3

RA : 18 ^h 32 ^m 00 ^s	1-GHz flux/Jy:
Dec: -08° 50′	Spectral index:

Radio: Incomplete ring, in complex region, overlapping G22.7-0.2.

Point sources: Pulsar association suggested.

References:

Shaver & Goss 1970, AuJPA, 14, 133. Molonglo at 408 MHz (3') and Parkes 64-m at 5 GHz (4'). Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Kassim 1992, AJ, 103, 943. VLA at 327 MHz $(3'.3 \times 3'.4: S = 138)$. Gaensler & Johnston 1995, MNRAS, 275, L73. Possible pulsar association.

70

0.5

W41

Size/arcmin: 27 Type: S

${f G23.6+0.3}$		
RA: $18^{h}30^{m}20^{s}$ Dec: $-08^{\circ}15'$	1-GHz flux/Jy: 8? Spectral index: 0.3	Size/arcmin: 10? Type: ?
Radio: Not well resolved, in a References: Shaver & Goss 1970, AuJPA, 14, 13 Altenhoff et al. 1979, A&AS, 35, 23	complex region. 33. Molonglo at 408 MHz (3') and Parkes 64-m a 5. Effelsberg 100-m at 4.9 GHz (2'.6).	t 5 GHz (4').
${f G24.7-0.6}$		
RA: $18^{h}36^{m}00^{s}$ Dec: $-07^{o}35'$	1-GHz flux/Jy: 8 Spectral index: 0.5	Size/arcmin: 15? Type: S?
Rearro : Incomplete shen, definition of the shen, definition of the shen, definition of the shear of the she	blonglo at 408 MHz (3' : $S = 12.3$) and Parkes 64 1. NRAO 140-ft at 5 GHz (6'.8 : $S = 2.2 \pm 0.5$). 2. Effelsberg 100-m at 4.9 GHz (2'.6). VLA at 1.47 GHz (44" × 56" : $S = 1.9$). 3. emission near remnant.	-m at 5 GHz (4' : $S = 3.6$).
${f G24.7+0.6}$		
RA: $18^{h}31^{m}30^{s}$ Dec: $-07^{\circ}07'$	1-GHz flux/Jy: 20? Spectral index: 0.2?	Size/arcmin: 30 × 15 Type: C?
Radio: Filled-centre, with fai References: Shaver & Goss 1970, AuJPA, 14, 13 Altenhoff <i>et al.</i> 1979, A&AS, 35, 23 Reich <i>et al.</i> 1984, A&A, 133, L4. E 45-m at 10.2 GHz (2'.7: S = 15 : Becker & Helfand 1987, ApJ, 316, 6	nt shell, and a compact HII region to the 3. Molonglo at 408 MHz (3') and Parkes 64-m at . Effelsberg 100-m at 4.9 GHz (2'.6). ffelsberg 100-m at 2.7 GHz (4.3 : $S = 19 \pm 3$) an ± 3). 360. VLA at 1.4 GHz (12"), and X-ray upper lim	S. t 5 GHz (4'). d 4.75 GHz (2'.4 : $S = 17 \pm 4$) and NRO it.
		4C-04.71
RA: $18^{h}38^{m}40^{s}$ Dec: $-04^{o}59'$	1-GHz flux/Jy: 6 Spectral index: 0.68	Size/arcmin: 4 Type: S
Early references refer to G27.3 Radio: Incomplete shell. X-ray: Diffuse emission, with Point sources: Compact X-r Distance: HI absorption indi	-0.1, a supposed larger remnant. central compact component. ay source. cates 6 to 7.5 kpc.	
References: Velusamy & Kundu 1974, A&A, 32 Dickel & Milne 1976, AuJPh, 29, 43 Angerhofer et al. 1977, A&A, 55, 17 Altenhoff et al. 1979, A&AS, 35, 23 Clark et al. 1975, AuJPA, 37, 75. M Caswell et al. 1982, MNRAS, 200, 1.9 ± 0.2 . Kriss et al. 1985, ApJ, 288, 703. IP Sanbonmatsu & Helfand 1992, AJ, Helfand et al. 1994, ApJ, 434, 627.	375. NRAO 300-ft at 2.7 GHz (5'). 35. Comparison of earlier Parkes 64-m maps at 2. 1. NRAO 140-ft at 5 GHz (6'.8 : $S = 2.0 \pm 0.5$). . Effelsberg 100-m at 4.9 GHz (2'.6). Iolonglo at 408 MHz (3' : $S = 4.4$). 1143. FIRST at 1415 MHz (60'' × 45'' : $S = 3.5$ C and HRI observations, plus VLA at 1.4 and 5 104, 2189. VLA at 1.4 GHz for HI absorption. ROSAT observations, particularly of central sour	27 GHz (8'.4) and 5 GHz (4'.4). 5). Revise $S(408) = 10.4$, and $S(5000) =$ GHz (12"). rce.

Version VI: 1996 August

${f G27.8}+0.6$		
RA: $18^{h}37^{m}06^{s}$	1-GHz flux/Jy: 30	Size/arcmin: 50×30
Dec: $-04^{\circ}28'$	Spectral index: varies	Type: F
Radio: Filled-centre, with spe	ectral turnover.	
References: Reich <i>et al.</i> 1984, A&A, 133, L4. Ef 45-m at 10.2 GHz (smoothed to 4 Frail <i>et al.</i> 1996, AJ, 111, 1651. OH	felsberg 100-m at 2.7 GHz (4'.3 : $S = 23 \pm 2$), a 4'.3 : $S = 8.5 \pm 2$). emission near remnant.	and 4.75 GHz $(2'.4:S=18\pm2)$ and NRC
G28.8 + 1.5		
RA: $18^{h}36^{m}30^{s}$	1-GHz flux/Jy: ?	Size/arcmin: 100?
Dec: $-02^{\circ}40'$	Spectral index: 0.4?	Type: S?
Radio: Part of rim detected. X-ray: Diffuse, Centrally brig	htened.	
References: Schwentker 1994, A&A, 286, L47. R	OSAT observations.	
G29.7 - 0.3		Kes 75
RA: $18^{h}43^{m}48^{s}$	1-GHz flux/Jy: 10	Size/arcmin: 3
Dec: $-03^{\circ}02'$	Spectral index: 0.7	́ Туре: С?
X-ray: Detected. Distance: HI absorption indic References: Shaver & Goss 1970, AuJPA, 14, 13 Milne & Dickel 1974, AuJPh, 27, 54 Becker & Kundu 1975, AJ, 80, 679. Becker & Kundu 1976, ApJ, 204, 42 densities. Altenhoff et al. 1979, A&AS, 35, 23 Becker et al. 1983, ApJ, 268, L93. V Becker & Dickelfand 1984, ApJ, 283, 1 March & Dickelfand 1984, ApJ, 283, 1	cates > 9 kpc and possibly at 21 kpc. 3. Molonglo at 408 MHz (3') and Parkes 64-m 49. Parkes 64-m at 2.7 GHz (8'.4: $S = 5 \pm 20\%$) NRAO 140-ft at 10.6 GHz (3'). 7. NRAO interferometer at 2.7 GHz ($20'' \times 7''$) . Effelsberg 100-m at 4.9 GHz ($2'.6$). 7LA at 1.4 GHz (3''), plus IPC and HRI. 54. VLA at 5 GHz ($2''.6$), plus HI. 55. CH ($an'' = 0$).	at 5 GHz (4').). and 8 GHz (25'' × 8''), plus review of flu
Salter et al. 1989, ApJ, 338, 171. Nl Kassim 1992, AJ, 103, 943. VLA at $\mathbf{G30.7}-2.0$	RAO 12-m at 84.2 GHz of core, plus review of f 327 MHz $(3'.4 \times 3'.7 : S = 27.4)$.	lux densities.
RA: $18^{n}51^{m}50^{s}$	1-GHz flux/Jy: 0.5?	Size/arcmin: 16
	Spectral muex: 0.7:	туре: :
Hadio: Poorly defined. References: Reich <i>et al.</i> 1988, in SNRISM, p293 Reich <i>et al.</i> 1990, A&AS, 85, 633. E	. Summary of parameters. ffelsberg 100-m at 2.7 GHz (4'.3).	
G30.7 + 1.0		
RA: $18^{h}42^{m}10^{s}$	1-GHz flux/Jy: 6	Size/arcmin: 24×18
Dec: $-01^{\circ}35'$	Spectral index: 0.4	Type: S?
Radio: Non-thermal, highly p	olarized part shell?	
Point sources: Compact sou	rce near centre.	
References: Reich <i>et al.</i> 1986, A&A, 155, 185. E Kassim 1992, AJ, 103, 943. VLA at	ffelsberg 100-m at 4.75 GHz (2'.4 : $S = 3.4 \pm 0$ 327 MHz (3'.6 × 3'.9 : $S = 8.6$).	.4), plus other flux densities.

Version VI: 1996 August

G31.5 - 0.6**RA**: 18^h48^m35^s 1-GHz flux/Jy: 2? Size/arcmin: 18? **Dec:** $-01^{\circ}35'$ Spectral index: ? Type: S? Has been called G31.55-0.65. Radio: Distorted shell? near HII region. **R**eferences: Fürst et al. 1987, A&AS, 69, 403. Effelsberg 100-m at 4.75 GHz (2'.4), plus other flux densities. G31.9 + 0.03C391**RA**: 18^h46^m50^s Size/arcmin: 5×7 1-GHz flux/Jy: 24**Dec:** -00°59′ Spectral index: 0.55 Type: S **Radio:** Shell, brightest in NW. X-ray: Diffuse shell. Distance: HI absorption is seen to the tangent point (8.5 kpc). **R**eferences: Radhakrishnan et al. 1972, ApJS, 24, 49. HI absorption. Becker & Kundu 1975, AJ, 80, 679. NRAO 140-ft at 10.6 GHz (3'). Green *et al.* 1975, A&A, 44, 187. Effelsberg 100-m at 15 GHz (58'' : S > 1.6). Becker & Kundu 1976, ApJ, 204, 427. NRÃO interferometer at 2.7 GHz (20"×23") and 8 GHz (24"×9"), plus review of flux densities. Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Goss et al. 1979, A&A, 78, 75. FIRST at 1.4 GHz ($54'' \times 66'': S = 20 \pm 2$) and Effelsberg 100-m at 10.7 GHz ($77'': S = 7.5 \pm 0.8$). Wang & Seward 1984, ApJ, 279, 705. IPC and HRI observations. Kassim 1992, AJ, 103, 943. VLA at 327 MHz $(3'.4 \times 3'.7 : S = 44.8)$. Reynolds & Moffett 1993, AJ, 105, 2226. VLA at 1.4 GHz (6"), including possible associated CO. Moffett & Reynolds 1994, ApJ, 425, 668. VLA at 330 MHz (smoothed to $30'': S = 38.5 \pm 0.5$) 1.46 GHz (6''.7) and 4.85 GHz $(6''.2 \times 6''.4)$, including spectral index and polarization studies. Frail et al. 1996, AJ, 111, 1651. OH emission near remnant, including compact sources (masers). G32.0 - 4.93C396.1**RA:** $19^{h}03^{m}00^{s}$ 1-GHz flux/Jy: 22? Size/arcmin: 60? **Dec:** -03°00′ Spectral index: 0.5? Type: S? Radio: Possible large shell?

References:

Milne & Hill 1969, AuJPh, 22, 211. Parkes 64-m at 635 MHz ($31': S = 25 \pm 30\%$), 1410 MHz ($15': S = 19 \pm 15\%$) and 2650 MHz ($8'.4: S = 8.6 \pm 30\%$). Fluxes if size is 60', plus review of flux densities. Caswell 1970, AuJPh, 23, 105. Revision of low frequency flux densities. Dickel & DeNoyer 1975, AJ, 80, 437. Arecibo at 111 MHz ($S = 105 \pm 30$).

G32.8 - 0.1		Kes 78
RA: $18^{h}48^{m}50^{s}$ Dec: $-00^{\circ}12'$	1-GHz flux/Jy: 11? Spectral index: 0.2?	Size/arcmin: 17 Type: S?
Part has been called G33.1–0	.1.	
Radio: Elongated shell?		
References: Velusamy & Kundu 1974, A&A, 32 Dickel & DeNoyer 1975, AJ, 80, 43' Becker & Kundu 1975, AJ, 80, 679.	, 375.NRAO 300-ft et 2.7 GHz $(5': S = 7.2 \pm 0.5)$ 7. Arecibo at 430 MHz $(S = 19.0 \pm 15.5)$. NRAO 140-ft at 10.6 GHz $(3')$.	
Convell of al 1075 Apr TDA 27 20	Molemale at 400 MHz $(2^{\prime}, S - 12.8)$ and Darkas	64 m at F C H_{π} $(4' + S = 7.7)$

Caswell et al. 1975, AuJPA, 37, 39. Molonglo at 408 MHz (3': S = 12.8) and Parkes 64-m at 5 GHz (4': S = 7.7). Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Kassim 1992, AJ, 103, 943. VLA at 327 MHz $(3'.6 \times 3'.8: S = 31.3)$. G33.2 - 0.6

RA: $18^{h}51^{m}12^{s}$ **Dec:** $-00^{\circ}05'$

1-GHz flux/Jy: 3.5 Spectral index: varies

Size/arcmin: 18 Type: S

Kes 79, 4C00.70, HC13

Size/arcmin: 10

Type: S

W44, 3C392

Radio: Incomplete shell.

References:

Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Reich 1982, A&A, 106, 314. Effelsberg 100-m at 2.7 GHz (4'.4: $S = 2.6 \pm 0.3$) and 4.75 GHz (2'.5: $S = 1.75 \pm 0.2$). Dubner et al. 1996, AJ, 111, 1304. VLA at 1.4 GHz (68'' × 52'': $S = 2.7 \pm 0.3$).

G33.6 + 0.1

RA: $18^{h}50^{m}15^{s}$ **Dec:** $+00^{\circ}37'$

1-GHz flux/Jy: 22 Spectral index: 0.5

Has been called G33.7+0.0.

Radio: Shell, with bright central region, in complex region.

X-ray: Detected.

Distance: HI absorption gives about 10 kpc.

References: Caswell *et al.* 1975, AuJPA, 37, 39. Molonglo at 408 MHz (3': S = 35.5) and Parkes 64-m at 5 GHz (4': S = 7.8). Caswell *et al.* 1975, A&A, 45, 239. HI absorption.

Dickel & DeNoyer 1975, AJ, 80, 437. Arecibo $S(430) = 69 \pm 33$.

Becker & Kundu 1975, AJ, 80, 679. NRAO 140-ft at 10.6 GHz $(3': S = 6.8 \pm 1.5)$.

Angerhofer et al. 1977, A&A, 55, 11. NRAO 140-ft at 5 GHz ($6'.8: S = 11.4 \pm 1.1$).

Caswell et al. 1981, MNRAS, 195, 89. FIRST at 1415 MHz (1), plus observations of the nearby point source.

van Gorkom et al. 1982, MNRAS, 198, 757. WSRT HI absorption to nearby point source, possibly extragalactic.

Seaquist & Gilmore 1982, AJ, 87, 378. VLA observations of nearby source, plus IPC observations.

Green 1989, MNRAS, 238, 737. OH absorption.

Frail & Clifton 1989, ApJ, 336, 854. VLA at 1.4 GHz $(1' \times 2'.9)$, including HI absorption.

Velusamy et al. 1991, AJ, 102, 676. VLA at 327 MHz (1'), 1.5 $(7'' \times 14'')$ and 5 GHz (7''), including spectral comparison.

Green & Dewdney 1992, MNRAS, 254, 686. Observations of adjacent molecular material.

Kassim 1992, AJ, 103, 943. VLA at 327 MHz $(3'.6 \times 3'.8 : S = 34.8)$.

Seward & Velusamy 1995, ApJ, 439, 715. ROSAT observations.

G34.7 - 0.4

RA : 18 ^h 53 ^m 30 ^s	1-GHz flux/Jy: 230	Size/arcmin: 35×27
Dec: $+01^{\circ}18'$	Spectral index: 0.30	Type: S

Has been called G34.6-0.5.

Radio: Distorted shell, brighter to the E, with pulsar and associated nebula.

X-ray: Centrally concentrated, thermal spectrum, plus pulsar nebula.

Point sources: Pulsar within the boundary of the remnant.

Distance: HI absorption indicates 3 kpc.

References:

Kundu & Velusamy 1972, A&A, 20, 237. NRAO 140-ft at 10.7 GHz $(3': S = 105 \pm 7)$. Velusamy & Kundu 1974, A&A, 32, 375. NRAO 300-ft at 2.7 GHz $(5': S = 177 \pm 10)$. Caswell et al. 1975, A&A, 45, 239. HI absorption. Clark et al. 1975, AuJPA, 37, 75. Molonglo at 408 MHz (3': S = 299 which is less than the 390 Jy found by Kesteven 1968, AuJPh, 21, 739 with the same telescope). Dickel & DeNoyer 1975, AJ, 80, 437. Arecibo $S(430) = 540 \pm 187$. Dickel & Milne 1976, AuJPh, 29, 435. Comparison of earlier Parkes 64-m maps at 2.7 GHz (8'.4) and 5 GHz (4'.4). Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Smith et al. 1985, MNRAS, 217, 99. IPC observations Wolszczan et al. 1991, ApJ, 372, L99. Pulsar detection. Kassim 1992, AJ, 103, 943. VLA at 327 MHz $(3'.6 \times 3'.8 : S = 469)$. Jones et al. 1993, MNRAS, 265, 631. VLA at 1.4 GHz (15"), plus X-ray spectra. Rho et al. 1994, ApJ, 430, 757. Optical and ROSAT observations. Koo & Heiles 1995, ApJ, 442, 679. HI of surrounding shell. Esposito et al. 1996, ApJ, 461, 820. Possible associated gamma-ray emission. Harrus et al. 1996, ApJ, 464, L161. ASCA observations. Frail et al. 1996, ApJ, 464, L165. VLA at 1.5 and 8.4 GHz (8".9 × 7".8) of pulsar nebula.

Frail et al. 1996, AJ, 111, 1651. OH maser emission.

G36.6 - 0.7		
RA: $18^{h}58^{m}05^{s}$ Dec: $+02^{\circ}52'$	1-GHz flux/Jy: ? Spectral index: ?	Size/arcmin: 25? Type: S?
Radio: Polarized arc, possibl	y part of a larger shell?	
References: Fürst <i>et al.</i> 1987, A&AS, 69, 403. F Kassim 1992, AJ, 103, 943. VLA at	Effelsberg 100-m at 4.75 GHz (2'.4), plus other : 327 MHz (3'.4 × 3'.7 : $S = 6.7$).	flux densities.
G36.6 + 2.6		
RA: $18^{h}46^{m}20^{s}$	1-GHz flux/Jy: 0.7?	Size/arcmin: $17 \times 13?$
Dec: $+04^{\circ}23'$	Spectral index: 0.5?	Type: S
Radio: Poorly resolved shell.		
References: Reich et al. 1988, in SNRISM, p293 Reich et al. 1990, A&AS, 85, 633. I	3. Summary of parameters. Effelsberg 100-m at 2.7 GHz (4'.3).	
G39.2 - 0.3		3C396, HC24, NRAO 593
RA: $19^{h}01^{m}40^{s}$	1-GHz flux/Jy: 18	Size /arcmin: 8×6
Dec: $+05^{\circ}23'$	Spectral index: 0.6	Type: S
Radio: Shell, brightest to the	W, with faint "tail" to E.	
X-ray: Centrally brightened.		
Distance: HI absorption sugg	gests at least 7.7 kpc.	
References: Shaver & Goss 1970, AuJPA, 14, 13 Dickel & DeNoyer 1975, AJ, 80, 43' Becker & Kundu 1975, AJ, 80, 679 Caswell <i>et al.</i> 1975, A&A, 45, 239. Altenhoff <i>et al.</i> 1979, A&AS, 35, 23 Caswell <i>et al.</i> 1982, MNRAS, 200, 3 Becker & Helfand 1987, AJ, 94, 162 Patnaik <i>et al.</i> 1990, A&A, 232, 467. plus OSRT at 327 MHz (100'' × Kassim 1992, AJ, 103, 943. VLA at Anderson & Rudnick 1993, ApJ, 40	33. Molonglo at 408 MHz (3'). 7. Arecibo $S(430) = 54 \pm 38$. . NRAO 140-ft at 10.6 GHz (3' : $S = 4.1 \pm 1.0$) HI absorption. 3. Effelsberg 100-m at 4.9 GHz (2'.6). 1143. FIRST at 1.4 GHz (65" × 48"). 29. VLA at 1.4 GHz (12" : $S = 14$) and 5 GHz, VLA at 1.5 GHz (25") and 1.4 GHz (7".8 × 7" 31"), including review of flux densities. 5 327 MHz (3'.5 × 3'.6 : $S = 42.5$). 28. 514. VLA at 1.45 and 4.89 GHz for spectral	plus IPC observations. .5) and 5 GHz (25'') including polarization, index studies.
G39.7 - 2.0		W50, SS433
RA: $19^{h}10^{m}00^{s}$ Dec: $+04^{\circ}50'$	1-GHz flux/Jy: 85? Spectral index: 0.7?	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Eastern part has been called (G40.0-3.1. Is this a SNR?	
Radio: Elongated shell, conta Optical: Faint filaments at tl X-ray: Emission from SS433	uining SS433, adjacent to the HII region ne edge of the radio emission. and two lobes.	S74.
Point sources: SS433 is the	compact source in the centre of the W50	0.

Distance: Distance to SS433 is 5 kpc.

References:

van den Bergh 1980, ApJ, 236, L23. Optical in H α and [SII]. Zealey *et al.* 1980, MNRAS, 192, 731. Optical spectra. van Gorkom *et al.* 1982, MNRAS, 198, 757. WSRT HI absorption to nearby point source (not SS433). Seaquist & Gilmore 1982, AJ, 87, 378. VLA observations of nearby source.

Watson et al. 1983, ApJ, 273, 688. X-ray observations. Downes et al. 1986, MNRAS, 218, 393. Effelsberg 100-m at 4.75 GHz (2'.4 : $S = 34 \pm 4$), plus previous 1.7 and 2.7 GHz data.

Romney et al. 1987, ApJ, 321, 822. VLBI of SS433, including distance. Elston & Baum 1987, AJ, 94, 1633. Mosaic with VLA at 1.4 GHz (30'') of fine structure only. Kawai et al. 1989, PASJ, 41, 491. X-ray observations of SS433.

Band 1989, ApJ, 336, 937. Einstein and EXOSAT observations. Yamauchi et al. 1994, PASJ, 46, L109. X-ray spectral observations.

${f G40.5-0.5}$		
$\mathbf{RA:} 19^{\mathrm{h}}04^{\mathrm{m}}45^{\mathrm{s}}$	1-GHz flux/Jy: 11	Size/arcmin: 22
Dec: $+06^{\circ}26'$	Spectral index: 0.5	Type: S
Radio: Shell, brightest to the	NE.	
References: Altenhoff <i>et al.</i> 1979, A&AS, 35, 23 Downes <i>et al.</i> 1980, A&A, 92, 47. E review of flux densities.	5. Effelsberg 100-m at 4.9 GHz (2'.6). Effelsberg 100-m at 1.7 GHz (7'.6 : $S = 9.3 \pm 1$.3), and 2.7 GHz (4'.4 : $S = 7.2 \pm 0.5$), plus
G41.1 - 0.3		3C397
RA: $19^{h}05^{m}08^{s}$ Dec: $+07^{\circ}03'$	1-GHz flux/Jy: 22 Spectral index: 0.48	Size/arcmin: 4.5×2.5 Type: S
Radio: 3C397 is two sources:	the E is the SNR, the W is a HII regio	n.
X-ray: Brighter to the E and	W.	
Distance: Possible limit of >	7.5 kpc for non-thermal component from	om HI absorption.
Dickel & DeNoyer 1975, AJ, 80, 43 Haystack 36-m at 15.5 GHz (2'.3 Caswell et al. 1975, AuJPA, 37, 39. Altenhoff et al. 1979, A&AS, 35, 23 Caswell et al. 1982, MNRAS, 200, 1 Becker et al. 1985, ApJ, 296, 461. V Morsi & Reich 1987, A&AS, 71, 188 Kassim 1992, AJ, 103, 943. VLA at Anderson & Rudnick 1993, ApJ, 40	37. Arecibo $S(430) = 82 \pm 51$, also Algonqui : $S = 8.5 \pm 3.0$). Molonglo at 408 MHz (3' : $S = 29.8$) and Par 2. Effelsberg 100-m at 4.9 GHz (2'.6). 143. FIRST at 1.4 GHz (58'' × 52''). 7LA at 1.4 and 5 GHz (8''), plus HRI and IPC 9. Effelsberg 100-m at 32 GHz (smoothed to 3 327 MHz (3'.5 × 3'.6 : $S = 46.3$). 8, 514. VLA at 1.45 and 4.89 GHz, for spectra	1 46-m at 10.6 GHz $(3': S = 12 \pm 2)$, and kes 64-m at 5 GHz $(4': S = 8.7)$. c) observations. $0'': S = 1.10 \pm 0.19$). al index studies.
$\mathbf{G42.8} + 0.6$		
RA : $19^{h}04^{m}55^{s}$	1-GHz flux/Jy: 3?	Size/arcmin: 24
Dec: $+09^{\circ}00'$	Spectral index: 0.5?	Type: S
Has been called G42.8+0.65.		
Radio: Faint shell.		
Point sources: Near soft gam	nma repeater.	
References: Fürst <i>et al.</i> 1987, A&AS, 69, 403. E Vasisht <i>et al.</i> 1994, ApJ, 431, L35.	Offelsberg 100-m at 4.75 GHz (2'.4 : $S = 1.5 \pm$ VLA at 327 MHz (3'.2 × 3'.4).	0.2), plus other flux densities.
G43.3 - 0.2		W49B
RA : 19 ^h 08 ^m 44 ^s	1-GHz flux/Jy: 38	$\mathbf{Size}/\mathbf{arcmin:}\ 4 imes 3$
$\mathbf{Dec:}$ +09°01′	Spectral index: 0.48	Type: S
Radio: Shell, brightest to the X-ray: Filled-centre.	SE and W, near the HII region W49A	

Distance: HI absorption indicates 10 kpc.

References:

Shaver & Goss 1970, AuJPA, 14, 133. Molonglo at 408 MHz (3') and Parkes 64-m at 2.7 GHz (4'). Downes & Wilson 1974, A&A, 34, 133. Effelsberg 100-m at 10.7 GHz (1'.3). Caswell et al. 1975, A&A, 45, 239. HI absorption. Green et al. 1975, A&A, 44, 187. Effelsberg 100-m at 15.0 GHz (58": $S = 9.0 \pm 0.7$). Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Pye et al. 1984, MNRAS, 207, 649. HRI and IPC observations, and VLA at 1.4 and 5 GHz (both 12"). Smith et al. 1985, ApJ, 296, 469. EXOSAT spectrum. Morsi & Reich 1987, A&AS, 71, 189. Effelsberg 100-m at 32 GHz (smoothed to 30": $S = 6.90 \pm 0.38$). Moffett & Reynolds 1994, ApJ, 437, 705. VLA at 330 MHz (6".7 \times 7".7 : S = 64.4), 1.48 GHz (4".8 \times 5".2 : S = 31.8) and 4.85 GHz (4".0 \times 4".1), including polarization. Fujimoto et al. 1995, PASJ, 47, L31. ASCA observations.

G43.9 + 1.6**RA**: 19^h03^m30^s **1-GHz flux/Jy:** 8.6? Size/arcmin: 60? **Dec:** $+10^{\circ}25'$ Spectral index: 0.2? Type: S? Radio: Large, poorly defined faint shell. References: Reich et al. 1988, in SNRISM, p293. Summary of parameters. Reich et al. 1990, A&AS, 85, 633. Effelsberg 100-m at 2.7 GHz (4'.3). Vasisht et al. 1994, ApJ, 431, L35. VLA at 327 MHz (3'.2 × 3'.4). G45.7 - 0.4**RA:** $19^{h}14^{m}05^{s}$ **1-GHz flux/Jy:** 4.2? Size/arcmin: 22 **Dec:** $+11^{\circ}04'$ Spectral index: 0.4? Type: S Radio: Shell, brightest to the SE, poorly defined to NW. **R**eferences: Fürst et al. 1987, A&AS, 69, 403. Effelsberg 100-m at 4.75 GHz (2'.4: S = 2.6 ± 0.3), plus other flux densities. G46.8 - 0.3(HC30)**RA:** $19^{h}15^{m}50^{s}$ Size/arcmin: 17×13 1-GHz flux/Jy: 14 **Dec:** $+12^{\circ}04'$ Spectral index: 0.5 Type: S Has been called G46.6-0.2. **Radio:** Shell, two bright arcs to NNW and SSE. Distance: HI absorption suggests 6.8-8.8 kpc. **R**eferences: Willis 1973, A&A, 26, 237. NRAO 300-ft at 2.7 GHz (5': $S = 9.8 \pm 0.9$), and VRO 37-m at 1.7 GHz ($S = 14.5 \pm 5.5$). Caswell et al. 1975, AuJPA, 37, 39. Molonglo at 408 MHz (3': S = 20.3) and Parkes 64-m at 5 GHz (4': S = 7.1). Dickel & DeNoyer 1975, AJ, 80, 437. Arecibo $S(430) = 46 \pm 21$. Angerhofer et al. 1977, A&A, 55, 11. NRAO 140-ft at 5 GHz $(6'.8: S = 5.9 \pm 0.6)$. Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Sato 1979, ApL, 20, 43. HI absorption. Dubner et al. 1996, AJ, 111, 1304. VLA at 1.4 GHz $(58'' \times 53'' : S = 13.3 \pm 0.1)$. G49.2 - 0.7(W51)

RA: 19^h21^m30^s

1-GHz flux/Jy: 160? Spectral index: 0.3? Size/arcmin: 30 Type: S?

Radio: In complex region, parameters uncertain.

X-ray: Elongated east-west.

Dec: $+14^{\circ}00'$

Distance: HI absorption suggests 4.1 kpc.

References:

Shaver & Goss 1970, AuJPA, 14, 133. Parkes 64-m at 5 GHz (4').

Sato 1973, PASJ, 25, 135. HI absorption.

Velusamy & Kundu 1974, A&A, 32, 375. NRAO 300-ft at 2.7 GHz (5'), $S = 51.5 \pm 3.2$, for the non-thermal component, but probably confused.

Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Seward 1990, ApJS, 73, 781. IPC observations.

Copetti & Schmidt 1991, MNRAS, 250, 127. CLFST at 151 MHz.

Kassim 1992, AJ, 103, 943. VLA at 327 MHz (3'.1 × 3'.5).

Subrahmanyan & Goss 1995, MNRAS, 275, 755. VLA at 330 MHz (1'.1).

Koo et al. 1995, ApJ, 447, 211. ROSAT observations.

Frail et al. 1996, AJ, 111, 1651. OH emission near remnant.

Size/arcmin: 23

Type: S

G53.6 - 2.23C400.2, NRAO 611 **RA**: 19^h36^m30^s Size/arcmin: 28×33 1-GHz flux/Jy: 8 **Dec:** +17°08′ Spectral index: 0.75 Type: S Has been called G53.7-2.2. Radio: Ring of emission, with extension to NW. **Optical:** Filaments and diffuse emission. X-ray: Centrally brightened, offset to NW. Distance: Mean optical velocity indicates 6.7 kpc. References: Willis 1973, A&A, 26, 237. NRAO 300-ft at 2.7 GHz $(5': S = 5.3 \pm 0.6)$. van den Bergh 1978, ApJS, 38, 119. Optical. Velusamy & Kundu 1974, A&A, 32, 375. NRAO 300-ft at 2.7 GHz $(5': S = 4.8 \pm 0.3)$. Clark et al. 1975, AuJPA, 37, 75. Molonglo at 408 MHz (3': S = 11.7). Dickel & DeNoyer 1975, AJ, 80, 437. Arecibo $S(430) = 20 \pm 10, S(318) = 20 \pm 3.6.$ Goss et al. 1975, A&A, 43, 459. WSRT at 610 MHz $(1' \times 3' : S = 13.2 \pm 1.6)$. Sabbadin & d'Odorico 1976, A&A, 49, 119. Optical spectra. Rosado 1983, RMxAA, 8, 59. Optical spectra. Blair & Long 1988, PASP, 100, 461. Optical imaging and spectroscopy. Long et al. 1991, ApJ, 373, 567. IPC and optical observations. Winkler et al. 1993, ApJ, 405, 608. Optical imaging. Dubner et al. 1994, AJ, 108, 207. VLA at 327 MHz (59") and 1.49 GHz (52"), plus X-rays. Saken et al. 1995, ApJ, 443, 231. ROSAT observations. G54.1 + 0.3**RA**: 19^h28^m28^s 1-GHz flux/Jy: 0.5 Size/arcmin: 1.5 **Dec:** +18° 46′ Spectral index: 0.1 Type: F? Radio: Filled-centre. X-ray: Detected. **R**eferences: Green 1985, MNRAS, 216, 691. 5km at 2.7 GHz $(7'' \times 20'')$. Reich et al. 1985, A&A, 151, L10. Effelsberg 100-m at 4.75 GHz $(2'.4: S = 0.37 \pm 0.04)$ Velusamy & Becker 1988, AJ, 95, 1162. VLA at 1.4 $(14'' : S = 0.48 \pm 0.03)$, 1.6 $(14'' : S = 0.42 \pm 0.03)$ and 5 GHz $(5'': S = 0.33 \pm 0.02)$, OSRT at 327 MHz $(S = 0.50 \pm 0.08)$, plus review of flux densities. Seward 1989, AJ, 97, 481. IPC observations G54.4 - 0.3 $(\mathrm{HC40})$ **RA**: 19^h31^m10^s Size/arcmin: 40 1-GHz flux/Jy: 28**Dec:** +18°50′ Spectral index: 0.5 Type: S Has been called G54.5-0.3. Radio: Shell, in complex region. **R**eferences: Velusamy & Kundu 1974, A&A, 32, 375. NRAO 300-ft at 2.7 GHz $(5': S = 34.4 \pm 5.0)$. Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Caswell 1985, AJ, 90, 1224. DRAO at 1.4 GHz $(1'.3 \times 2'.6 : S = 18 \pm 4)$. Velusamy et al. 1986, JA&A, 7, 105. WSRT at 609 MHz (50" × 191" smoothed to 100" × 200"). Junkes et al. 1992, A&AS, 91, 1. Surrounding CO. Junkes et al. 1992, A&A, 261, 289. Nearby IRAS sources. G55.7 + 3.4

Dec: +21°38' Radio: Incomplete shell.

RA: 19^h19^m10^s

Point sources: Old pulsar within the boundary of the remnant.

References:

Goss et al. 1977, A&A, 61, 93. WSRT observations at 610 MHz ($57'' \times 156'' : S = 1.9 \pm 0.2$) and 1415 MHz ($27'' \times 72'' : S = 1.0 \pm 0.1$).

1-GHz flux/Jy: 1.4

Spectral index: 0.6

Full listings

${f G57.2}+0.8$		(4C21.53)
RA: $19^{h}32^{m}50^{s}$ Dec: $+21^{\circ}50'$	1-GHz flux/Jy: 1.8? Spectral index: ?	Size/arcmin: 12? Type: S?
Radio: Extended non-therma Point sources: Near the mill References:	l arc. isecond pulsar, but not thought to be :	related.
Sieber & Seiradakis 1984, A&A, 130 surveys of the area. Caswell et al. 1985, AJ, 90, 488. DF	, 257. Effelsberg 100-m at 1.4 GHz (8'.8 : 1.34 AO at 1.4 GHz (1' \times 3').	\pm 0.1), 2.7 GHz (4'.3 : 0.86 \pm 0.1), plus other
${f G59.5+0.1}$		
RA: $19^{h}40^{m}25^{s}$ Dec: $+23^{\circ}28'$	1-GHz flux/Jy: 3? Spectral index: ?	Size/arcmin: 5 Type: S
Radio: Incomplete shell. References: Taylor et al. 1992, AJ, 103, 931. WS	SRT at 327 MHz (2'.5 $ imes$ 1'.0 : $S = 5.1 \pm 0.2$),	and northern sky survey at 4.9 GHz.
G59.8 + 1.2		
RA: $19^{h}36^{m}50^{s}$ Dec: $+24^{o}12'$	1-GHz flux/Jy: 1.6 Spectral index: 0.5	Size/arcmin: 20 × 16? Type: ?
Radio: Poorly defined source. References: Reich et al. 1988, in SNRISM, p293 Reich et al. 1990, A&AS, 85, 633. E	. Summary of parameters. ffelsberg 100-m at 2.7 GHz (4'.3).	
${f G65.1+0.6}$		
RA: $19^{n}52^{m}30^{s}$ Dec: $+28^{\circ}25'$	1-GHz flux/Jy: 6 Spectral index: 0.6	Size/arcmin: 90 × 50 Type: S
Radio: Large, faint shell. References: Landecker et al. 1990, A&A, 232, 20	7. DRAO at 408 MHz (3'.5 × 7'.0 : $S = 9.5 \pm 0$.1), and 1.4 GHz (1'.0 × 2'.0 : S = 5.4±1.0).
${f G65.3+5.7}$		
RA: $19^{h}31^{m}00^{s}$ Dec: $+31^{o}05'$	1-GHz flux/Jy: 52? Spectral index: 0.6?	Size/arcmin: 310 × 240 Type: S?
Has been called G65.2+5.7.		
Radio: Large, faint ring? nea	r S91 and S94.	
Optical: Strong in $H\alpha + [NII]$	and [OIII].	
A-ray: Detected.	ity suggests 0.8 kpc	
References: Gull et al. 1977, ApJ, 215, L69. Op Reich et al. 1979, A&A, 72, 270. E $S(408) = 91 \pm 5$ from previous sk Lozinskaya 1981, SvAL, 7, 17. Mear Rosado 1981, ApJ, 250, 222. Optica Fesen et al. 1983, ApJS, 51, 337. De Fesen et al. 1985, ApJ, 292, 29. Opt Seward 1990, ApJS, 73, 781. IPC of	tical plates. a plates. a optical velocity. b interferometry. b populi imagery. ical spectra. pservations.	moothed to 11' : $S~=~42.4\pm1.6)$, estimate

G65.7 + 1.2

RA: $19^{h}50^{m}10^{s}$	1-GHz flux/Jy: 5.1
Dec: $+29^{\circ}18'$	Spectral index: 0.6

DA 495 Size/arcmin: 18 Type: ?

Has mistakenly been called G55.7+1.2.

Radio: Filled-centre or thick shell?

References:

Willis 1973, A&A, 26, 237. NRAO 300-ft at 2.7 GHz (5': $S = 2.8 \pm 0.4$), and VRO 37-m at 1.7 GHz ($S = 4.4 \pm 0.5$), plus review of flux densities.

Dickel & DeNoyer 1975, AJ, 80, 437. Arecibo $S(430) = 8.7 \pm 4.9$, $S(318) = 9.7 \pm 2.2$.

Landecker & Caswell 1983, AJ, 88, 1810. DRAO at 1.4 GHz $(0'.9 \times 1'.5)$: $S = 4.4 \pm 0.2$)

Velusamy et al. 1989, JA&A, 10, 161. OSRT at 327 MHz (36" × 64"), WSRT at 610 MHz (62") and VLA at 1.4 GHz (36" and 12"), including IRAS imaging.

G67.7 + 1.8

RA: 19^h52^m34^s **Dec:** $+31^{\circ}21'$

1-GHz flux/Jy: 1.4 Spectral index: 0.3 Size/arcmin: 9 Type: S

Radio: Double arc shell.

References:

Taylor et al. 1992, AJ, 103, 931. WSRT at 327 MHz $(1'.9 \times 1'.0 : S = 1.9 \pm 0.1)$, and northern sky survey at 4.9 GHz $(S = 0.42 \pm 0.05).$

G68.6 - 1.2

RA: 20^h06^m40^s **Dec:** $+30^{\circ}28'$

1-GHz flux/Jy: 0.7? Spectral index: 0.0? Size/arcmin: 28×25 ? Type: ?

Radio: Faint, poorly defined source.

References:

Reich et al. 1988, in SNRISM, p293. Summary of parameters. Reich et al. 1990, A&AS, 85, 633. Effelsberg 100-m at 2.7 GHz (4'.3).

${f G69.0+2.7}$		CTB 80
BA : 19 ^h 51 ^m 30 ^s	1-GHz flux/Jy: 120?	Size/arcmin: 80?
Dec: $+32^{\circ}45'$	Spectral index: varies	
An association with a SN in A	D1408 has been suggested. Has been called	d G68.8+2.8. Is it a SNR?
Radio: Compact core, flat sp	ectrum plateau, and steeper spectrum exte	ensions, with spectral break?
Optical: Expanding nebulosi	ty near centre, with filaments to the SW a	nd far NE.
X-ray: Diffuse emission with	compact source.	
Point sources: Pulsar at we	stern edge of core.	
References:		
Angerhofer et al. 1981, A&A, 94, optical.	313. WSRT at 610 MHz $(56'' \times 103'')$ 1.4 GHz (2	$24^{\prime\prime} \times 44^{\prime\prime})$ and 5 GHz (7" \times 13"), plus
Becker et al. 1982, ApJ, 255, 557. 2	K-ray observations.	
Sofue et al. 1983, PASJ, 35, 437. N	RO 45-m at 10.2 GHz (2'.7).	
Velusamy & Kundu 1983, JA&A, 3	, 253. VLA of compact sources.	
Blair et al. 1984, ApJ, 282, 161. Op	otical images and spectra.	
Wang & Seward 1984, ApJ, 285, 60	7. IPC observations.	
Strom et al. 1984, A&A, 139, 43. R	adio observations of flat spectrum component, VL	A 5 GHz (1".7) and 1.4 GHz.
Mantovani et al. 1985, A&A, 145, 50	Bologna at 408 MHz $(2'.6 \times 4'.9 : S = 67.5 \pm 10.5)$,	Effelsberg 100-m at 1.41 $(9': S = 62 \pm 9)$,
$1.72~(7'.6:S=66\pm5),2.7~(4'.5)$	$S = 52 \pm 4$ and 4.75 GHz $(2'.4 : S = 44 \pm 3.3)$,	plus review of flux densities.
Kulkarni et al. 1988, Nat, 331, 50.	Pulsar detection.	
Angelini et al. 1988, ApJ, 330, L43	. EXOSAT spectra.	
Fesen et al. 1988, Nat, 334, 229. IR	AS of surrounding shell.	
Whitehead et al. 1989, MNRAS, 23	37, 1109. Optical of core.	
Salter et al. 1989, ApJ, 338, 171. N	RAO 12-m at 84.2 GHz of core, plus review of flu	x densities.
Hester & Kulkarni 1989, ApJ, 340,	362. Optical imaging and spectroscopy.	
Koo et al. 1990, ApJ, 364, 178. Lar	ge, expanding HI shell.	
Greidanus & Strom 1990, A&A, 24	0, 376. Optical kinematics of core.	
Koo et al. 1993, ApJ, 417, 196. VL	A at 1.4 GHz of surrounding HI (1'), plus IRAS.	

Safi-Harb et al. 1995, ApJ, 439, 722. ROSAT observations.

G69.7 + 1.0

RA: $20^{h}00^{m}45^{s}$ **Dec:** $+32^{\circ}35'$

1-GHz flux/Jy: 1.6 Spectral index: 0.8 Size/arcmin: 16 Type: S

Radio: Poorly resolved source.

References:

Reich et al. 1988, in SNRISM, p293. Summary of parameters. Reich et al. 1990, A&AS, 85, 633. Effelsberg 100-m at 2.7 GHz (4'.3).

Dec: $+36^{\circ}03'$

RA: 20^h12^m20^s

1-GHz flux/Jy: 9? Spectral index: 0.3? Size/arcmin: 22? Type: S?

Radio: Incomplete, clumpy shell.

Optical: Weak shell.

G73.9 + 0.9

References:

Reich et al. 1986, A&A, 155, 185. Effelsberg 100-m at 4.75 GHz (2'.4: $S = 6.7 \pm 0.5$), plus other flux densities. Chastenay & Pineault 1988, in SNRISM, p297. DRAO at 408 MHz (3'.5 × 5'.9) and 1.4 GHz (1'.0 × 1'.7). Pineault & Chastenay 1990, MNRAS, 246, 169. DRAO at 408 MHz (3'.4 × 5'.8: $S = 12.7 \pm 1.2$) and 1.4 GHz (1'.0 × 1'.7: $S = 7.4 \pm 1.0$). Lozinskaya et al. 1993, AZh, 70, 469. (See also AR, 37, 240.) Optical observations.

G74.0 - 8.5		Cygnus Loop
$\mathbf{B} \mathbf{A} \cdot 20^{\mathrm{h}} 49^{\mathrm{m}} 00^{\mathrm{s}}$	1-GHz flux/Jy: 210	Size/arcmin: 230×160
Dec: $+30^{\circ}30'$	Spectral index: varies	
Badio: Shell brightest to the	NE with fainter breakout region to S	with spectral variations
Optical: Large filamentary lo	op. brightest to the NE. not well define	ed to the S or W.
X-ray: Shell in soft X-rays.	· · · · · · · · · · · · · · · · · · ·	
Point sources: Several comp	act radio sources within the boundary (of the remnant, including CL4.
Keen et al. 1973, A&A, 28, 197. Eff Dickel & Willis 1980, A&A, 85, 55. Seaquist & Gilmore 1982, AJ, 87, 3' Fesen et al. 1982, ApJ, 262, 171. Op Hester et al. 1983, ApJ, 273, 219. O Ku et al. 1984, ApJ, 278, 615. IPC Green 1984, MNRAS, 211, 433. Mor Charles et al. 1985, ApJ, 295, 456. J Braun & Strom 1986, A&A, 164, 20 Straka et al. 1986, ApJ, 306, 266. R Raymond et al. 1988, ApJ, 324, 869 Ballet et al. 1989, A&A, 211, 217. [] Ballet & Rothenflug 1989, A&A, 21 Green 1990, AJ, 100, 1927. DRAO a Graham et al. 1991, AJ, 101, 175. S Shull & Clarke 1991, PASP, 103, 81 Blair et al. 1991, ApJ, 374, 202. Far Blair et al. 1992, AJ, 104, 719. Ha Cornett et al. 1992, AJ, 104, 719. Ha Cornett et al. 1992, ApJ, 395, L9. U Long et al. 1992, ApJ, 400, 214. Op Arendt et al. 1994, ApJ, 420, 721. H Miyata et al. 1994, ApJ, 420, 721. H Miyata et al. 1994, ApJ, 420, 721. H	 elsberg 100-m at 2.7 GHz (4'.8), NE at 10.7 G WSRT at 610 MHz (56" × 107") of NE area (78. VLA observations of CL4. otical spectroscopy. ptical imagery. and HRI X-ray observations. st of remnant at 408 MHz (80" × 160") with O PC observations. 8. IRAS observations. adio and optical comparison of NE. VLA at 1 Detailed optical study of filaments. Fex] and [FeXIV] spectroscopy. 8, 277. EXOSAT observations. at 408 MHz (3'.3 × 6'.7) for spectral index stu hocked molecular H outside rim in NE. 1. Optical spectroscopy of nearside filaments. UV mapping. 7 spectroscopy. 7, 265. Optical kinematics. 14. Optical kinematics. 14. Optical kinematics. 15. Tay observations. Far UV observations. 	 Hz (17.25). [NGC6992] only. DMT. .6 GHz (4".7) plus optical. .dy, plus X-ray and optical. .dy, plus X-ray and optical.
$C74.0 \pm 1.2$		
G74.9 + 1.2 DA . 20h14m10s	1 CHa furr/Irra 0	$\mathbf{Sigo}/\mathbf{oremin}$
Dec: $+37^{\circ}03'$	Spectral index: varies	$\mathbf{Type:} \mathbf{F}$
Badio: Filled-centre with hig	-	over
X-ray: Centrally brightened	in polarization and high frequency turn	over.
Distance: HI absorption indic	cates 12 kpc.	
Point sources: Extragalactic	compact source is nearby.	
References: Dickel & DeNoyer 1975, AJ, 80, 437 Weiler & Shaver 1978, A&A, 70, 38 5 GHz $(24'' \times 40'' : S = 5.6 \pm 1.3)$ Geldzahler <i>et al.</i> 1980, A&A, 84, 23 Wilson 1980, ApJ, 241, L19. IPC of van Gorkom <i>et al.</i> 1982, MNRAS, 1 Seaquist & Gilmore 1982, AJ, 87, 33 Morsi & Reich 1987, A&AS, 69, 533 Green & Gull 1989, MNRAS, 237, 5 Salter <i>et al.</i> 1989, ApJ, 338, 171 NI	Arecibo $S(430) = 12.2 \pm 9.7$, $S(318) = 17.7 \pm 39$. WSRT at 610 MHz $(57'' \times 94'' : S = 9.1 \pm 39$. 7. Effelsberg 100-m at 2.7 GHz $(4'.4 : S = 7.6 \pm 39.7 \pm 39.7$	\pm 5.0. \pm 1.2), 1.4 (24'' × 40'' : S = 8.7 ± 1.2) and \pm 0.5). Pract source. 0'' : S = 1.47 ± 0.19). 1.
Pineault & Chastenay 1990, MNRA $S = 7.2 \pm 0.3$). Asaoka & Koyama 1990, PASJ, 42, Wendker et al. 1991, A&A, 241, 58 $(S = 7.5 \pm 0.7)$. Wallace et al. 1994, A&A, 286, 565. Cho et al. 1994, AJ, 108, 634. CO o	S, 246, 169. DRAO at 408 MHz (3'.4 \times 5'.8 : 625. Ginga X-ray spectrum. 51. DRAO at 408 MHz (3'.5 \times 5'.2 : $S = 13$. HI of surroundings. f adjacent molecular clouds.	$S = 11.6 \pm 0.4$) and 1.4 GHz (1'.0 × 1'.7 : .3 ± 0.8) and Effelsberg 100-m at 4.8 GHz

G76.9 + 1.0

RA: $20^{h}20^{m}30^{s}$ 1-GHz flux/Jy: 2?**Dec:** +38° 33′ Spectral index: 0.6?

Size/arcmin: 9×12 Type: ?

Radio: Diffuse, non-thermal.

References:

Landecker et al. 1993, A&A, 276, 522. VLA at 1.49 GHz (14"), 4.86 GHz (13" × 16") and 8.55 GHz (11" × 12"), including polarization and review of flux densities.

C789 191

${f G78.2} + {f 2.1}$		$\mathrm{DR4,~\gamma~Cygni}$
RA: $20^{h}19^{m}00^{s}$	1-GHz flux/Jy: 340	Size/arcmin: 60
Dec: $+40^{\circ}15'$	Spectral index: 0.5	Type: S

Has been called G78.1+1.8.

Radio: In complex region (early catalogues refer to other proposed remnants in this region).

Optical: Faint filaments, spectra indicate a SNR superposed on a HII region.

X-ray: Weak emission from the SE of the remnant.

References:

Higgs et al. 1977, AJ, 82, 718. DRAO at 1.4 GHz $(2' \times 3' : S = 270 \pm 40)$ plus some 10 GHz (4') survey data, reveals true extent of remnant.

d'Odorico & Sabbadin 1977, A&AS, 28, 439. Optical spectra.

van den Bergh 1978, ApJS, 38, 119. Optical.

Landecker et al. 1980, A&AS, 39, 133. DRAO HI observations $(2' \times 3'.1)$.

Higgs et al. 1983, in IAU101, p281. IPC observations.

Higgs et al. 1983, AJ, 88, 97. CO of surroundings.

Bohigas et al. 1983, RMxAA, 8, 155. Optical spectra, find thermal only.

Braun & Strom 1986, A&AS, 63, 345. WSRT HI observations. Fukui & Tatematsu 1988, in SNRISM, p261. CO observations of the vicinity (2'.7).

Green 1989, MNRAS, 238, 737. OH observations.

Pineault & Chastenay 1990, MNRAS, 246, 169. DRAO at 408 MHz $(3'.4 \times 5'.8: S = 480 \pm 60)$ and 1.4 GHz $(1'.0 \times 1'.7: S = 480 \pm 60)$ 270 ± 40).

Wendker et al. 1991, A&A, 241, 551. DRAO at 408 MHz $(3'.5 \times 5'.2 : S = 540 \pm 40)$ and Effelsberg 100-m at 4.8 GHz $(S = 150 \pm 15).$

Esposito et al. 1996, ApJ, 461, 820. Associated gamma-ray emission.

${f G82.2}+{f 5.3}$		W63
RA: $20^{h}17^{m}30^{s}$	1-GHz flux/Jy: 120?	Size/arcmin: 95×65
Dec: $+45^{\circ}20'$	Spectral index: 0.5?	Type: S
Radio: Shell in the Cygnus 2	K complex.	
Optical: In complex region,	but spectra indicate SNR filaments.	
X-ray: Detected.		
References: Velusamy & Kundu 1974, A&A, 32 Sabbadin 1976, A&A, 51, 159. Opt	2, 375. NRAO 300-ft at 2.7 GHz $(5': S = 59.0 \pm 3.5)$. ical spectra.	

Angerhofer et al. 1977, A&A, 55, 11. NRAO 140-ft at 5 GHz (6'.8). Incomplete mapping.

Rosado & González 1981, RMxAA, 5, 93. Optical spectra. Seward 1990, ApJS, 73, 781. IPC observations.

Higgs et al. 1991, JRASC, 85, 24. DRAO at 408 MHz $(3'.4 \times 5'.0 : S = 165 \pm 21)$, plus review of flux densities.

G84.2 - 0.8

$\mathbf{RA:}\ 20^{\mathrm{h}}51^{\mathrm{m}}30^{\mathrm{s}}$	1-GHz flux/Jy: 11	Size/arcmin: 20×16
Dec: $+43^{\circ}16'$	Spectral index: 0.5	Type: S

Radio: Elongated shell, with a filament aligned with the major axis.

References:

Matthews et al. 1977, A&A, 55, 1. WSRT at 610 MHz ($56'' \times 81''$: $S = 12.4 \pm 1.5$) and Effelsberg 100-m at 2.7 GHz $(4'.4:S=6.8\pm1.3).$

Matthews & Shaver 1980, A&A, 87, 255. WSRT at 1415 MHz (23"×32"), and Effelsberg 100-m at 2.7 GHz (4'.4: S = 5.6±0.5). Feldt & Green 1993, A&A, 274, 421. DRAO at 1.4 GHz (1' × 1'.5), including HI, plus CO observations.

Type: S

G84.9 + 0.5

RA: 20^h48^m45^s 1-GHz flux/Jy: 0.8Size/arcmin: 6 **Dec:** $+44^{\circ}42'$ Spectral index: 0.4

Radio: Incomplete shell.

References:

Taylor et al. 1992, AJ, 103, 931. WSRT at 327 MHz $(1'.4 \times 1'.0 : S = 1.2 \pm 0.1)$, and northern sky survey at 4.9 GHz $(S = 0.40 \pm 0.01).$

C 80	0	1	Λ	7
509	.U.	+	4	. 6

RA: $20^{h}43^{m}30^{s}$	1-GHz flux/Jy: 220	Size /arcmin: 120×90
Dec: +50° 25′	Spectral index: 0.40	Type: S

Radio: Distorted shell (4C50.52, an extragalactic double, is within the boundary of the remnant).

Optical: Filaments possibly associated.

X-ray: Detected from incomplete mapping.

References:

Hirabayashi & Takahashi 1972, PASJ, 24, 231. 30-m dish at 4.2 GHz (11' : $S = 160 \pm 40$).

Willis 1973, A&A, 26, 237. NRAO 300-ft at 2.7 GHz $(5': S = 148 \pm 16)$, plus optical filaments.

Hill 1974, MNRAS, 169, 59. HMT at 1.4 GHz $(3' \times 3'.9)$.

Haslam et al. 1975, A&A, 39, 453. Effelsberg 100-m at 2.7 GHz (4'.4)

Reich et al. 1983, in IAU101, p377. Effelsberg 100-m at 4.75 GHz (2'.5). Leahy 1987, MNRAS, 228, 907. IPC observations.

Fukui & Tatematsu 1988, in SNRISM, p261. CO observations of the vicinity (2'.7).

Tatematsu et al. 1990, A&A, 237, 189. DRAO at 408 MHz (3'.5 × 4'.5) and 1.4 GHz (1'.0 × 1'.3), including HI, plus CO observations of adjacent molecular cloud.

RA: $20^{h}51^{m}00^{s}$ **Dec:** $+55^{\circ}10'$

1-GHz flux/Jy: 9 Spectral index: 0.54

DA 530, 4C(T)55.38.1 Size/arcmin: 27×20 Type: S

Has been called G93.2+6.7.

Radio: Shell, with two bright limbs, highly polarized.

References:

Roger & Costain 1976, A&A, 51, 151. DRAO at 1.42 GHz $(2' \times 2'.4 : S = 6.9)$. Haslam et al. 1980, A&A, 92, 57. Effelsberg 100-m at 1.72 GHz (7'.6: $S = 6.47 \pm 0.52$) and 2.7 GHz (4'.4: $S = 5.64 \pm 0.64$), plus review of flux densities.

Lalitha et al. 1984, A&A, 131, 196. Effelsberg 100-m at 4.75 GHz (smoothed to $3': S = 4.01 \pm 0.57$).

G93.7 - 0.2

RA: $21^{h}27^{m}45^{s}$ **Dec:** $+50^{\circ}35'$

1-GHz flux/Jy: 65 Spectral index: 0.3 CTB 104A, DA 551 Size/arcmin: 80

Type: S

Has been called G93.6-0.2 and G93.7-0.3.

Radio: Faint shell with possible a steep spectrum core.

References

Velusamy & Kundu 1974, A&A, 32, 375. NRAO 300-ft at 2.7 GHz $(5': S = 18.4 \pm 1.0)$.

Mantovani et al. 1982, A&A, 105, 176. Effelsberg 100-m at 1.7 GHz (7'.6: $S = 53.5 \pm 5.0$), plus review of flux densities.

Landecker et al. 1985, AJ, 90, 1082. DRAO at 1.4 GHz (smoothed to $2': S = 58 \pm 6$).

Mantovani et al. 1991, A&A, 247, 545. Effelsberg 100-m at 4.75 GHz (smoothed to $3': S = 33.5 \pm 4.0$), including polarization, plus review of flux densities.

HB21

3C434.1

CTB 109

${f G94.0+1.0}$		3C43
RA: $21^{h}23^{m}10^{s}$	1-GHz flux/Jy: 15	Size/arcmin: 30×25
Dec: $+51^{\circ}40'$	Spectral index: 0.44	Type: S

Radio: Incomplete shell, in complex region.

References:

G109.1 - 1.0

Willis 1973, A&A, 26, 237. NRAO 300-ft at 2.7 GHz (5': $S = 6.1 \pm 0.8$), and VRO 37-m at 1.7 GHz ($S = 11 \pm 3$). Velusamy & Kundu 1974, A&A, 32, 375. NRAO 300-ft at 2.7 GHz (5': $S = 5.8 \pm 0.4$). Also NRAO 140-ft at 5 GHz (6'). Mantovani *et al.* 1982, A&A, 105, 176. Effelsberg 100-m at 1.7 GHz (7'.6: $S = 12.0 \pm 1.3$), plus review of flux densities. Goss *et al.* 1984, A&A, 138, 469. WSRT at 610 MHz (smoothed to 100'': $S = 16 \pm 1.7$) and Effelsberg 100-m at 4.75 GHz $(2'.4: S = 7.2 \pm 0.5).$

Landecker et al. 1985, AJ, 90, 1082. DRAO at 1.4 GHz (smoothed to $2': S = 16 \pm 3$).

RA: $22^{h}59^{m}30^{s}$ Dec: $+58^{\circ}37'$	1-GHz flux/Jy: 20 Spectral index: 0.50	Size/arcmin: 28 Type: S
Radio: Semicircular shell, with	the Molecular cloud S152 is to the imm	iediate W.
X-ray: Incomplete shell.		
Point sources: Pulsar at W edg	ge.	
References: Hughes et al. 1981, ApJ, 246, L127. W Blair & Kirshner 1981, Nat, 291, 132. Downes 1983, MNRAS, 203, 695. Effel Gregory et al. 1983, in IAU101, p429. Sofue et al. 1983, PASJ, 35, 447. NRO Hughes et al. 1984, ApJ, 283, 147. WS 16.8 ± 2) and Algonquin 46-m at 6.3 Braun & Strom 1986, A&AS, 63, 345. Tatematsu et al. 1987, PASJ, 39, 755. Tatematsu et al. 1987, PASJ, 39, 755. Tatematsu et al. 1988, A&A, 195, 114. E3 Morini et al. 1988, ApJ, 333, 777. EXC Koyama et al. 1989, PASJ, 41, 461. X- Coe et al. 1989, MNRAS, 238, 649. IR Green 1989, MNRAS, 238, 737. OH of Tatematsu et al. 1990, ApJ, 351, 157. Davies & Coe 1991, MNRAS, 249, 313 Hurford & Fesen 1995, MNRAS, 277, 4	'SRT at 610 MHz $(1': S = 40 \pm 5)$ shows bad Optical spectra. sberg 100-m at 2.7 GHz $(4'.4: S = 13.0 \pm 1.5)$ VLA at 1.4 GHz $(1')$, NRAO 300-ft at 5 GHz 45-m at 10.2 GHz $(2'.7)$. SRT at 610 MHz $(20'': S = 26 \pm 3)$ 1.4 GHz (5 GHz $(4'.5: S = 6.7 \pm 1)$. WSRT HI observations. NRO 45-m at 10 GHz $(2'.7)$, plus polarization . CO observations of the surroundings $(2'.7)$. KOSAT of pulsar. DSAT observations. ray observations of surroundings. pservations. CO of surroundings, plus X-ray observations. S. Optical and IR observations near pulsar. 549. ROSAT imaging.	CLEAN artefacts. (3') and IPC observations. (10''), DRAO at 1.4 GHz $(1' \times 1'.2 : S = 1)$

G111.7 - 2.1		Cassiopeia A, 3C461
RA : $23^{h}21^{m}10^{s}$	1-GHz flux/Jv: 2720	Size/arcmin: 5
Dec: $+58^{\circ}32'$	Spectral index: 0.77	Type: S
Presumably the remnant of a late	e 17th century SN.	
Radio: Bright shell with compac	t knots and extended plateau of emiss	ion.
Optical: Fast knots and quasi-st	ationary flocculli, with many filaments	s at large radii.
X-ray: Incomplete shell.		0
Distance: Optical expansion, plu	us proper motions indicate 2.8 kpc.	
References	is proper metions indicate fre aper	
Bell et al. 1975, Nat, 257, 463. 5km at	5 GHz $(2'' \times 2''.3)$.	
Green et al. 1975, A&A, 44, 187. Effels	berg 100-m at 15.0 GHz (58'' : $S = 419.1 \pm 1$.7).
Fabian et al. 1980, MNRAS, 193, 175.	HRI observations.	
Kamper & van den Bergh 1983 in IAU	Jarison of A-ray, Radio and HRI.	
Markert et al. 1983, ApJ, 268, 778. X-r	ay asymmetry.	
Tuffs 1986, MNRAS, 219, 13. Proper m	otions from 5km maps at 5 GHz $(2'' \times 2''.3)$	between 1974 and 1978.
Mezger et al. 1986, A&A, 167, 145. 247	-GHz map $(70'')$.	
Isunemi et al. 1986, ApJ, 306, 248. A-1 Fesen et al. 1987 ApJ 313, 378 Optic:	ay spectrum.	
Fesen et al. 1988, ApJ, 329, L89. Optic	al, flocculli, and "flare".	
Jansen et al. 1988, ApJ, 331, 949. EXO	SAT observations.	
Woan & Duffett-Smith 1990, MNRAS,	243, 87. Structure at 81.5 MHz.	
Fesen 1990, AJ, 99, 1904. [NeIII] optica Bees 1990 MNBAS 243 637 Flux der	1 imagery. Seity decrease at 38 MHz	
Greidanus & Strom 1991, A&A, 249, 52	21. $20\mu m$ observations of part of shell.	
Anderson et al. 1991, ApJ, 373, 146. V	LA at 1.4 and 5 GHz (1".3) for spectral varia	ations.
Hook et al. 1992, A&A, 255, 285. Flux	density decrease at 81.5 MHz.	
Wilson et al. 1993, A&A, 280, 221. Mol Holt et al 1994 PASI 46 L151 X roy	lecular emission towards remnant.	
Woan & Duffett-Smith 1993, MNRAS.	260, 693. Deep pulsar search.	
Guame et al. 1994, ApJ, 425, 127. NH3	absorption and CO observations.	
Iyudin et al. 1994, A&A, 284, L1. Gam	ma ray line observations.	
Reed et al. 1995, ApJ, 440, 706. Optica	I spectra, for 3-d structure. LA at 1.4 GHz and 4.8 GHz (both 1^{11} 2) for	nolonization studies
Anderson & Rudnick 1995, ApJ, 441, 300. VI	07. VLA at 1.4 GHz and 4.8 GHz (both 1 $.3)$, for	r motion studies.
The et al. 1995, ApJ, 444, 244. Gamma	، ray observations.	
Predehl & Schmitt 1995, A&A, 293, 88	9. ROSAT of dust scattered halo.	
Liszt & Lucas 1995, A&A, 294, 811. Nr Lewrence et al 1995, AI 109, 2635, Or	AO 12-m observations of molecular emission	1 and absorption.
Kassim et al. 1995, ApJ, 455, L59. VLA	A at 74 $(25'')$ and 332 MHz $(6'')$, including sr	pectral index comparisons.
Anderson & Rudnick 1996, ApJ, 456, 2	34. VLA for spectral index comparisons.	· –
Agafanov 1996, A&A, 306, 578. Flux de	ensity decrease at 102 MHz.	

$\begin{array}{c} {\bf G112.0+1.2} \\ {\bf RA:} \ 23^{\rm h}13^{\rm m}40^{\rm s} \end{array}$

RA: $23^{n}13^{m}40^{s}$ **Dec:** $+61^{\circ}30'$ **1-GHz flux/Jy:** 7? **Spectral index:** 0.6?

Size/arcmin: 30? Type: S?

Radio: Non-thermal source hinted by Bologna survey. References:

Bonsignori-Facondi & Tomasi 1979, A&A, 77, 93. Bologna at 408 MHz $(4'.2 \times 110': S = 11 \pm 30\%)$.

${f G114.3}+{f 0.3}$		
RA: $23^{h}34^{m}45^{s}$ Dec: $+61^{\circ}38'$	1-GHz flux/Jy: 6? Spectral index: 0.3?	Size/arcmin: 90 × 55 Type: S
Radio: Shell, with HII region	S165 within the boundary of the remna	nt.
Distance: Possible association	with HI features suggests 3.0-3.8 kpc.	
Point sources: Pulsar near ce	entre of remnant.	
References: Reich & Braunsfurth 1981, A&A, 99 data, plus HI from Maryland-Gree Kulkarni et al. 1993, Nat, 362, 135. Fürst et al. 1993, A&A, 276, 470. Pu Becker et al. 1996, A&A, 306, 464. H	, 17. Effelsberg 100-m at 2.7 GHz (4'.4 : S = 3 en Bank survey. Pulsar association. dsar association. ROSAT of pulsar.	3.6) and $S(1.4) = 4.4$ from 1.4 GHz survey
G116.5 + 1.1		
RA: $23^{h}51^{m}20^{s}$ Dec: $+62^{\circ}58'$	1-GHz flux/Jy: 11? Spectral index: 0.8?	${f Size/arcmin: 80 imes 60} \ {f Type: S}$
Radio: Distinct shell, with high	h polarization.	
Distance: Possible association	with HI features suggests 3.6-5.2 kpc.	
References: Reich & Braunsfurth 1981, A&A, 99, survey data, plus HI from Maryla	17. Effelsberg 100-m at 2.7 GHz (4'.4 : $S = 4.7$ ad-Green Bank survey.	$(7 \pm 0.4) ext{ and } S(1.4) = 8.0 \pm 0.8 ext{ from } 1.4 ext{ GHz}$
G116.9 + 0.2		CTB 1
RA: $23^{h}56^{m}40^{s}$ Dec: $+62^{\circ}10'$	1-GHz flux/Jy: 9? Spectral index: 0.5?	Size/arcmin: 34 Type: S
Has been called G117.3+0.1 an	d G116.9+0.1.	
Radio: Incomplete shell.		
Optical: Filaments on sky sur	vey.	
Point sources: Pulsar nearby		
Distance: Possible association 2.7 kpc.	n with HI features suggests 2.8-4.0 k	cpc, mean optical velocity suggests
References: Willis 1973, A&A, 26, 237. NRAO : review of flux densities. van den Bergh <i>et al.</i> 1973, ApJS, 26	300-ft at 2.7 GHz (5 $^\prime$: S = 3.9 \pm 1.0), and VH , 19. Optical.	RO 37-m at 1.7 GHz (S = 5.5 ± 2.0), plus
Velusamy & Kundu 1974, A&A, 32, Angerhofer et al. 1977, A&A, 55, 11 Dickel & Willis 1980, A&A, 85, 55. Reich & Braunsfurth 1981, A&A, 99,	375. NRAO 300-ft at 2.7 GHz ($5': S = 4.2 \pm 0$. NRAO 140-ft at 5 GHz ($6'.8: S = 3.0 \pm 0.3$). WSRT at 610 MHz ($56'' \times 64''$) and 1.4 GHz (17. Effelsberg 100-m at 2.7 GHz ($4'.4: S = 4.8$	D.2). $^{.}$
Lozinskaya 1981, SvAL, 7, 17. Mean Landecker <i>et al.</i> 1982, AJ, 87, 1379. Fesen <i>et al.</i> 1985, ApJ, 292, 29. Opti	optical velocity. DRAO at 1.42 GHz and HI $(2' \times 2'.3 : S = 8.3)$ ical spectra.	3 ± 0.5), plus review of flux densities.
Hailey & Craig 1994, ApJ, 434, 635. Hailey & Craig 1995, ApJ, 455, L15:	ROSAT of nearby pulsar.	
G117.4 + 5.0		

RA: 23^h52^m30^s

RA: $23^{\circ}52^{\circ}30^{\circ}$ **Dec:** $+67^{\circ}30'$ **1-GHz flux/Jy:** 30? **Spectral index:** 0.5?

Size/arcmin: 60×80 ? Type: S?

Radio: Non-thermal source hinted by Bologna survey.

References:

Bonsignori-Facondi & Tomasi 1979, A&A, 77, 93. Bologna at 408 MHz $(4'.2 \times 110': S = 45 \pm 30\%)$.

G119.5 + 10.2

$\mathbf{RA:}\ 00^{\mathrm{h}}04^{\mathrm{m}}00^{\mathrm{s}}$	1-GHz flux/Jy:	36
Dec: $+72^{\circ}30'$	Spectral index:	0.3

CTA 1 Size/arcmin: 90? Type: S

Radio: Incomplete shell, poorly defined in north.

Optical: Faint diffuse nebulosities.

X-ray: Centrally brightend.

References:

Sieber et al. 1979, A&A, 74, 361. Effelsberg 100-m at 2.7 GHz $(4'.4: S = 23.6 \pm 2.8)$.

Sieber et al. 1981, A&A, 103, 393. Effelsberg 100-m at 2.7 GHz and 1.7 GHz (7'.6 : $S = 31.6 \pm 2.5$), and 6C at 151 MHz $(4': S = 62.6 \pm 6).$

Fesen et al. 1981, ApJ, 247, 148. Optical, including spectra.

Fesen et al. 1983, ApJS, 51, 337. Deep [OIII] imagery.

Seward 1990, ApJS, 73, 781. IPC observations.

Simonetti 1992, ApJ, 386, 170. VLA observations of background sources for rotation measure studies.

Pineault et al. 1993, AJ, 105, 1060. DRAO at 1.4 GHz $(1': S = 34 \pm 4)$, plus HI and IRAS.

Seward et al. 1995, ApJ, 453, 284. ROSAT observations.

${f G120.1+1.4}$		Tycho, $3C10$, $SN1572$
$\mathbf{RA:}\ 00^{\mathrm{h}}22^{\mathrm{m}}30^{\mathrm{s}}$	1-GHz flux/Jy: 56	Size/arcmin: 8
Dec: $+63^{\circ}52'$	Spectral index: 0.61	Type: S
This is the remnant of the Ty	cho's SN of AD1572.	
Radio: Shell, brightest to the	NE.	
Optical: Faint filaments/kno	ts to the NNW, NE and E.	
X-ray: Shell, coincident with	the radio shell, brighter to the NE.	
Point sources: Faint radio s	ource near centre of the remnant, though	t to be extragalactic.
Distance: HI absorption give	s 4–5 kpc, optical proper motion and mod	lelled shock velocity gives 2.3 kpc.
References: Duin & Strom 1975, A&A, 39, 33. Klein <i>et al.</i> 1979, A&A, 76, 120. Ef Strom <i>et al.</i> 1982, MNRAS, 200, 47 Dickel <i>et al.</i> 1982, ApJ, 257, 145. C Reid <i>et al.</i> 1982, ApJ, 261, 485. IP Seward <i>et al.</i> 1983, ApJ, 266, 287. Tan & Gull 1985, MNRAS, 216, 94 1980, for expansion.	WSRT at 610 MHz (57" × 64") and 5 GHz (7" : felsberg 100-m at 10.7 GHz (1'.2 : $S = 13.1 \pm 0.8$ 73. WSRT at 1415 MHz (27" × 31") from 1971 a omparison of Radio, X-ray and Optical. C observations. HRI observations. 19. 5km at 2.7 GHz (4") from 1980 and 1983, an	x 8"). 3), plus review of flux densities. and 1979, for expansion. ad OMT at 1.4 GHz (23") from 1965 and
Albinson et al. 1986, MNRAS, 219, Green & Gull 1987 MNRAS, 224	427. HI observations. 1055 VIA HI absorption observations towards c	entral radio source

Smith et al. 1988, ApJ, 325, 288. EXOSAT spectrum and image (smoothed to 13").

Dickel et al. 1991, AJ, 101, 2151. VLA at 1.4 and 5 GHz (1".5). Wood et al. 1992, AJ, 103, 1338. VLA at 5 GHz (1".5) polarization studies.

Fink et al. 1994, A&A, 283, 635. X-ray spectra.

Vancura et al. 1995, ApJ, 441, 680. X-ray spectra and ROSAT image. Predehl & Schmitt 1995, A&A, 293, 889. ROSAT of dust scattered halo.

Schwarz et al. 1995, A&A, 299, 193. WSRT and Effelsberg 100-m at 1.4 GHz (50"), and VLA at 1.4 GHz (13"), for neutral hydrogen studies.

G126.2 + 1.6

RA: $01^{h}18^{m}30^{s}$ **Dec:** +64°00′

1-GHz flux/Jy: 7 Spectral index: varies Size/arcmin: 70 Type: S?

Radio: Poorly defined shell.

Optical: Filaments detected.

References:

Reich et al. 1979, A&A, 78, L13. Effelsberg 100-m at 1.4 GHz (9': $S = 6.8 \pm 0.7$) and 2.7 GHz (4'.4: $S = 3.9 \pm 0.4$). Blair et al. 1980, ApJ, 242, 592. Optical detection and spectra.

Rosado 1982, RMxAA, 5, 127. Optical spectra. Fesen et al. 1983, ApJS, 51, 337. Deep [OIII] imagery.

Fürst et al. 1984, A&A, 133, 11. Effelsberg 100-m at 2.7 GHz (4'.4) and 4.8 GHz (2'.6). Joncas et al. 1989, A&A, 219, 303. DRAO at 408 MHz (3'.5 \times 3'.9 : $S = 12 \pm 2.5$) and part at 1.4 GHz (1'.1 \times 1'.0), plus review of flux densities.

Xilouris et al. 1993, A&A, 270, 393. Optical imaging.

${f G127.1} + 0.5$		R5
RA: $01^{h}25^{m}00^{s}$	1-GHz flux/Jy: 13	Size/arcmin: 45
Dec: $+62^{\circ}55'$	Spectral index: 0.6	Type: S
Has been called G127.3+0.7.		
Radio: Distinct shell, with brigh	t central source.	
Point sources: Flat radio spect:	rum (extragalactic) source at centre of	remnant.
Optical: Detected.		
Distance: 1.2-1.3 kpc if associat	ed with NGC559.	
 References: Caswell 1977, MNRAS, 181, 789. HMT Salter et al. 1978, A&A, 66, 77. Effelsb Pauls 1977, A&A, 59, L13. Effelsberg 1 Reich et al. 1979, A&A, 78, L13. Effelsberg 1 Pauls et al. 1982, A&A, 112, 120. WSF Geldzahler & Shaffer 1982, ApJ, 260, L Fürst et al. 1984, A&A, 133, 11. Effelsb Goss & van Gorkom 1984, JA&A, 5, 42 Joncas et al. 1989, A&A, 219, 303. DRA plus review of flux densities. Xilouris et al. 1993, A&A, 270, 393. Op 	at 1.42 GHz (3'.5 \times 3'.9), plus other observa erg 100-m at 2.7 GHz (4'.4), plus 5 and 8.7 G 00-m at 1.4 GHz (9' : $S = 8 \pm 1$). berg 100-m at 1.4 GHz (9' : $S = 10.8 \pm 1.3$). T at 610 MHz (56" \times 62") and HI absorption 69. Observations of central source. berg 100-m at 2.7 GHz (4'.4) and 4.8 GHz (2' 55. WSRT HI absorption of central source. AO at 408 MHz (3'.5 \times 3'.9 : $S = 17.9 \pm 2.0$) and otical imaging.	ations of central source. GHz of the central source. In to the point source with the VLA. ('.6). Ind 1.4 GHz (1'.13 \times 1'.0 : $S = 10.1 \pm 0.8$),

HB3

G130.7 + 3.1		3C58, SN1181
$\mathbf{RA:}\ 02^{\mathrm{h}}01^{\mathrm{m}}55^{\mathrm{s}}$	1-GHz flux/Jy: 33	Size/arcmin: 9×5
Dec: $+64^{\circ}35'$	Spectral index: 0.10	Type: F
This is the remnant of the SN of ADI	181.	
Radio: Filled-centre, highly polarize	d, with high frequency turnover.	
Optical: Faint filaments.		
X-ray: Centrally brightened with po	ower-law spectrum.	
Point sources: Compact source in 2	X-rays.	
Distance: HI absorption indicates 3	.2 kpc.	
 References: Green et al. 1975, A&A, 44, 187. Effelsberg Wilson & Weiler 1976, A&A, 49, 357. WSR van den Bergh 1978, ApJ, 220, L9. Optical Becker et al. 1982, ApJ, 255, 557. X-ray ob Green & Gull 1982, Nat, 299, 606. HI absor Fesen 1983, ApJ, 270, L53. Optical spectra. Reynolds & Aller 1985, AJ, 90, 2312. VLA Davelaar et al. 1986, ApJ, 300, L59. EXOS. Green 1986, MNRAS, 218, 533. CLFST at 1 limit on shell. Green 1987, MNRAS, 225, 11P. Flux densit Morsi & Reich 1987, A&AS, 69, 533. Effels Reynolds & Aller 1988, ApJ, 327, 845. VLA Salter et al. 1989, ApJ, 338, 171. NRAO 12 Asaoka & Koyama 1990, PASJ, 42, 625. Gi: Green & Scheuer 1992, MNRAS, 258, 833. Roberts et al. 1993, A&A, 274, 427. HI abs Wallace et al. 1994, A&A, 286, 565. HI of s Helfand et al. 1995, ApJ, 453, 741. ROSAT 	100-m at 15.0 GHz (58": $S = 26.7 \pm 0.$ T at 610 MHz (58" × 64"), 1.4 GHz (24 observations. servations. prion distance. at 1.4 GHz (2'), for limits of shell. AT spectrum. 151 MHz (1'.2 × 1'.3 : $S = 36 \pm 4$), 5km a cy increase at 408 MHz. berg 100-m at 32 GHz (26".5 : $S = 24.2$ at 1.4 (2".4) and 4.9 GHz (2".5). -m at 84.2 GHz (90" : $S = 15.0 \pm 2.0$), p mga X-ray spectrum. IRAS upper limits. orption. urroundings. observations.	5). $I'' \times 27''$) and 5 GHz (7'' $\times 8''$). at 2.7 GHz (4''), plus IPC observations for ± 1.4). plus review of flux densities.

G132.7 + 1.3

RA: $02^{h}14^{m}00^{s}$ Dec: $+62^{\circ}30'$	1-GHz flux/Jy: 45 Spectral index: 0.6	Size/arcmin: 80 Type: S
Has been called G132.4+2.2.		
TALE 1 1 1 1 1 1 1 1 1 1		

Radio: Faint shell, adjacent to W3/4/5 complex.

Optical: Complete, filamentary shell, shock excited spectra.

X-ray: Partial shell.

Distance: Interaction with surroundings suggests 2.2 kpc. **References:** van den Bergh et al. 1973, ApJS, 26, 19. Optical. Velusamy & Kundu 1974, A&A, 32, 375. NRAO 300-ft at 2.7 GHz (5': $S = 33.8 \pm 7.0$). d'Odorico & Sabbadin 1977, A&AS, 28, 439. Optical spectra. Read 1981, MNRAS, 194, 863. 6C at 151 MHz (4'.4) and HMT at 1.4 GHz (2') showing HI shell. Lozinskaya 1981, SvAL, 7, 17. Mean optical velocity. Fesen & Gull 1983, PASP, 95, 196. Optical image. Leahy et al. 1985, ApJ, 294, 183. IPC observations. Landecker et al. 1987, AJ, 94, 111. DRAO at 408 MHz (3'.5 × 4' : $S = 75 \pm 15$), plus review of flux densities. Routledge et al. 1991, A&A, 247, 529. DRAO at 1.4 GHz (1'.0 × 1'.1) for HI, plus CO observations. Fesen et al. 1995, AJ, 110, 2876. Optical imaging and spectroscopy, DRAO at 408 MHz (3'.5 × 4') and 1.4 GHz (1'.0 × 1'.1).

G152.2 - 1.2

RA: $04^{h}05^{m}30^{s}$ **Dec:** $+48^{\circ}24'$

1-GHz flux/Jy: 16? **Spectral index:** 0.7?

Size/arcmin: 110? Type: S?

Radio: Non-thermal source hinted by Bologna survey.

References:

Bonsignori-Facondi & Tomasi 1979, A&A, 77, 93. Bologna at 408 MHz (4'.2 \times 110' : $S = 30 \pm 30\%$).

HB9

G156.2 + 5.7

RA: $04^{h}54^{m}40^{s}$ **Dec:** $+51^{\circ}47'$ **1-GHz flux/Jy:** 5 **Spectral index:** 0.5

Size/arcmin: 110 Type: S

Radio: Faint shell.

X-ray: Faint shell.

References:

Pfeffermann et al. 1991, A&A, 246, L28. ROSAT detection.

Reich *et al.* 1992, A&A, 256, 214. Effelsberg 100-m at 1.4 (9': $S = 4.2 \pm 1.0$) and 2.7 GHz (4'.3: $S = 3.0 \pm 1.0$), plus HI and IRAS.

Yamauchi et al. 1993, PASJ, 45, 795. Hard X-ray observations.

G160.9 + 2.6

RA: $04^{h}57^{m}00^{s}$ **Dec:** $+46^{\circ}36'$

1-GHz flux/Jy: 110 Spectral index: 0.6 Size/arcmin: 140×120 Type: S

Has been called G160.5+2.8 and G160.4+2.8.

Radio: Large, filamentary shell.

Optical: Incomplete shell.

X-ray: Centrally brightened.

Point sources: Pulsar within boundary of the remnant, plus several nearby compact radio sources.

Distance: Various observations suggests less than 4 kpc.

References:

d'Odorico & Sabbadin 1977, A&AS, 28, 439. Optical spectra.

Damashek et al. 1978, ApJ, 225, L31. Pulsar.

Lozinskaya 1981, SvAL, 7, 17. Mean optical velocity.

Dwarakanath et al. 1982, JA&A, 3, 207. Radio observations at 34.5 MHz ($26' \times 40' : S = 750 \pm 150$), plus review of flux densities.

van Gorkom et al. 1982, MNRAS, 198, 757. WSRT HI absorption to nearby point source.

Seaquist & Gilmore 1982, AJ, 87, 378. VLA observations of nearby source.

Reich et al. 1983, in IAU101, p377. Effelsberg 100-m at 2.7 GHz (4'.5).

Krymkin et al. 1988, SvA, 32, 634. Observations at 12.6 and 25 MHz, plus review of flux densities.

Leahy 1988, ApJ, 322, 917. IPC observations.

Leahy & Roger, 1991, AJ, 101, 1033. DRAO at 408 MHz $(3'.5 \times 4'.8)$ and 1.4 GHz $(1'.0 \times 1'.4)$, including HI and discussion of distance.

Yamauchi & Koyama 1993, PASJ, 45, 545. Hard X-ray observations.

Leahy & Aschenbach 1995, A&A, 293, 853. ROSAT observations.

G166.0 + 4.3

RA: 05^h23^m00^s **Dec:** +42°52'

1-GHz flux/Jy: 7? Spectral index: 0.4? VRO 42.05.01 Size/arcmin: 55 × 35 Type: S

Radio: Two arcs of strikingly different radii.

Optical: Nearly complete ring.

X-ray: Predominantly in SW.

Distance: HI indicates 4.5 kpc.

References:

van den Bergh et al. 1973, ApJS, 26, 19. Optical. Willis 1973, A&A, 26, 237. NRAO 300-ft at 2.7 GHz $(5': S = 5.2 \pm 1.0)$. Lozinskaya 1979, AuJPh, 32, 113. H α interferometry. Landecker et al. 1982, ApJ, 261, L41. DRAO at 1.4 GHz $(1'.0 \times 1'.4)$, plus review of flux densities. Fesen et al. 1983, ApJS, 51, 337. Deep [OIII] imagery. Pineault et al. 1985, A&A, 151, 52. VLA at 1.4 GHz $(16'' \times 20'')$ of part of remnant, and optical. Pineault et al. 1987, ApJ, 315, 580. DRAO and VLA combined at 1.4 GHz (20''). Fesen et al. 1985, ApJ, 292, 29. Optical spectra. Braun & Strom 1986, A&AS, 63, 345. WSRT HI Observations. Landecker et al. 1989, MNRAS, 237, 277. DRAO at 1.4 GHz $(1'.0 \times 1'.4)$, including HI. Burrows & Guo 1994, ApJ, 421, L19. ROSAT images and spectra.

G166.2 + 2.5

RA: $05^{h}15^{m}30^{s}$	
Dec: $+41^{\circ}50'$	

1-GHz flux/Jy: 11 Spectral index: 0.5 OA 184 Size/arcmin: 90 × 70 Type: S

Radio: Large, faint shell.

Optical: Nearly complete ring.

Distance: HI indicates 8 ± 2 kpc.

References:

Willis 1973, A&A, 26, 237. NRAO 300-ft at 2.7 GHz $(5': S = 6.0 \pm 2.2)$.

Dickel & DeNoyer 1975, AJ, 80, 437. Arecibo 111 MHz.

Lozinskaya 1981, SvAL, 7, 17. Mean optical velocity.

Fesen et al. 1985, ApJ, 292, 29. Optical spectra.

Routledge et al. 1986, MNRAS, 221, 809. DRAO at 1.4 GHz $(1' \times 1'.4 : S = 9.0 \pm 0.5)$ including HI, plus review of flux densities.

Kim et al. 1988, AJ, 96, 704. VLA of background sources for magnetic field structure of the remnant. Leahy & Marshall 1988, MNRAS, 235, 805. IRAS observations.

G179.0 + 2.6

RA: $05^{h}50^{m}30^{s}$ **Dec:** $+31^{\circ}05'$

1-GHz flux/Jy: 7 Spectral index: 0.4

Size/arcmin: 70 Type: S?

Radio: Thick shell, with background extragalactic sources near centre.

References:

Fürst & Reich 1986, A&A, 154, 303. Effelsberg 100-m at 1.4 (9'.4), 2.7 (4'.3) and 4.75 GHz (2'.4). Fürst *et al.* 1989, A&A, 223, 66. Observations of central, extragalactic source.

G180.0 - 1.7

RA: 05^h36^m00^s **Dec:** +27°50′

1-GHz flux/Jy: 65 Spectral index: varies

S147

Size/arcmin: 180 Type: S

Radio: Large faint shell, with spectral break.

Optical: Wispy ring.

X-ray: Possible detection.

Point sources: Pulsar within boundary.

References:

van den Bergh *et al.* 1973, ApJS, 26, 19. Optical. Sofue *et al.* 1980, PASJ, 32, 1. Effelsberg 100-m at 5 GHz (2'.6) of parts. Kundu *et al.* 1980, A&A, 92, 225. Effelsberg 100-m at 2.7 GHz (5'.5 : $S = 34.9 \pm 4$) and 1.6 GHz (10' : $S = 60.2 \pm 6$). Angerhofer & Kundu 1981, AJ, 86, 1003. Arecibo at 430 MHz (9' : $S = 97 \pm 20$). Fürst *et al.* 1982, A&A, 115, 428. Observations of compact radio sources near the remnant. Fesen *et al.* 1985, ApJ, 292, 29. Optical spectra. Fürst & Reich 1986, A&A, 163, 186. Effelsberg 100-m at 1.4, 2.7 and 4.7/5.0 GHz (9'.4, 4'.3 and 2'.4/2'.6). Sauvageot *et al.* 1996, A&A, 227, 183. EXOSAT possible detection. Anderson *et al.* 1996, ApJ, 468, L55. Pulsar detection.

G189.1 + 3.0		$IC443, \ 3C157$
$\mathbf{RA:}~06^{\mathrm{h}}14^{\mathrm{m}}00^{\mathrm{s}}$	1-GHz flux/Jy: 160	Size/arcmin: 45
Dec: $+22^{\circ}36'$	Spectral index: 0.36	Type: S
Radio: Limb-brightened to NE	C, with faint extension to the E.	
Optical: Brightest to the NE,	with faint filaments outside the NE boun	dary.
X-ray: Shell, brightest to the	NE.	
Distance: Mean optical veloci	ty suggests 0.7–1.5 kpc, association with S	S249 gives 1.5-2 kpc.
References:		0
Duin & van der Laan 1975, A&A, 40, Lozinskaya 1981, SvAL, 7, 17. Mean Fesen 1984, ApJ, 281, 658. Optical o	111. WSRT at 610 MHz $(1' \times 2'.5)$, 1415 MHz (24) optical velocity. f filament to far NE.	$(2000)^{10} \times 63^{\prime\prime}$, and part at 5 GHz ($12^{\prime\prime} \times 31^{\prime\prime}$).
Erickson & Mahoney 1985, ApJ, 290 of flux densities.	, 596. TPT at 4 frequencies between 31 and 74 M	$\mathrm{[Hz}\;(13'\times11'\;\mathrm{to}\;5'.4\times4'.7),\mathrm{plus\;review}$
Braun & Strom 1986, A&A, 164, 193 Green 1986, MNRAS, 221, 473. CLF	3. WSRT at 327 MHz $(72'' \times 185'')$ and 1.4 GHz ST at 151 MHz $(1'.2 \times 3'.1)$ and HMT at 1.4 GH	$(17'' \times 43'')$, plus HI and IRAS. Hz $(2'.1 \times 5'.4)$.
Mufson et al. 1986, AJ, 92, 1349. Ra 40").	dio, IR, optical, UV and X-́ray comparison, inclu	uding VLA at 1.6 GHz $(3''.8 \times 3''.3 \text{ and})$
White et al. 1987, A&A, 173, 337. O	bservations of shocked molecular species.	
Graham et al. 1987, ApJ, 313, 847. I	R spectroscopy.	
Burton et al. 1988, MNRAS, 231, 61	7. Molecular hydrogen imaging of shocked mater	ial.
Brown et al. 1988, ApJ, 334, 852. [fo	$X = 1 \land CH_{Z} (1 \lor 1 \lor 1 \lor 2)$ of NE	
Petre et al 1988 ApJ 335 215 IPC	HBI SSS and other X-ray observations	
Ziurvs et al. 1989. ApJ, 341, 857. Ob	servations of shocked molecular species.	
Burton et al. 1990, ApJ, 355, 197. IF	t observations of shocked O2.	
Sauvageot et al. 1990, A&A, 232, 20	3. [Fex] and [FexIV] imaging.	
Moorhouse et al. 1991, MNRAS, 253	, 662. Observations of shocked molecular H_2 .	
Wood et al. 1991, AJ, 102, 224. VLA	at 5 GHz $(3''.6 \times 3''.8)$ of northeast, including	polarization.
Teske 1991, ApJ, 383, 233. [Fex] and	[FexIV] imaging.	
Wang & Scoville 1992, ApJ, 386, 158	\mathbf{V} . Ubservations of shocked molecular species.	
Wang et al. 1992, FASJ, 44, 303. GII	iga A-ray observations.	
Dickman et al 1992 ApJ 400 203	Observations of shocked molecular species.	
Inoue et al. 1993. PASJ, 45, 539. Ob	servations of shocked molecular H ₂ .	
van Dishoeck et al. 1993, A&A, 279,	541. Observations of shocked molecular species.	
Asaoka & Aschenbach 1994, A&A, 2	84, 573. X-ray, including possible overlapping ren	nnant.
White 1994, A&A, 283, L25. Observ	ations of shocked molecular species.	
Tauber et al. 1994, ApJ, 421, 570. O	bservations of shocked molecular species.	
Richter et al. 1995, ApJ, 454, 277. O	bservations of shocked molecular H_2 .	
Esposito et al. 1996, ApJ, 461, 820 Espoi et al. 1996, AJ, 111, 1651, OP .	Associated gamma-ray emission.	
тан сі иі. 1990, АЈ, 111, 1091. ОП :	116301 0111331011.	

G192.	8 —	1.1
-------	-----	-----

1-GHz flux/Jy: 20? Spectral index: 0.6? PKS 0607+17 Size/arcmin: 78 Type: S

Has been called G193.3-1.5. Has been regarded as part of the Origem Loop, a supposed larger remnant.

Radio: In complex region.

RA: $06^{h}06^{m}30^{s}$

Dec: $+17^{\circ}20'$

Optical: Encompasses S261 and S254-258.

References:

Milne & Dickel 1974, AuJPh, 27, 549. Parkes 64-m at 2.7 GHz (9': $S = 13 \pm 15\%$). Dickel & DeNoyer 1975, AJ, 80, 437. Arecibo at 318 MHz (15': $S = 74 \pm 32$), and S(610) = 40. Caswell 1985, AJ, 90, 1076. DRAO at 1.4 GHz (1' × 3'.3 : $S = 18 \pm 3$).

Monoceros Nebula

Type: S

Size/arcmin: 220

G205.5 + 0.5

$\mathbf{RA:}\ 06^{\mathrm{h}}36^{\mathrm{m}}00^{\mathrm{s}}$	1-GHz flux/Jy: 1	.60
Dec: +06°30′	Spectral index: (0.5

Radio: In complex region, parts may be HII regions.

Optical: Large ring, near Rosette nebula.

X-ray: Possibly detected.

Distance: Mean optical velocity suggests 0.8 kpc, low frequency radio absorption suggests 1.6 kpc. **References:**

Milne & Dickel 1974, AuJPh, 27, 549. Parkes 64-m at 2.7 GHz (9').

Velusamy & Kundu 1974, A&A, 32, 375. NRAO 300-ft at 2.7 GHz (5'), part only.

Dickel & DeNoyer 1975, AJ, 80, 437. Arecibo at 111 MHz $(1': S = 462 \pm 180)$ and S(610) = 245.

Davies et al. 1978, A&AS, 31, 271. Deep optical plates.

Lozinskaya 1981, SvAL, 7, 17. Mean optical velocity.

Graham et al. 1982, A&A, 109, 145. Effelsberg 100-m at 2.7 GHz (4'.4: $S = 97.6 \pm 12.5$), plus review of flux densities.

Fesen et al. 1985, ApJ, 292, 29. Optical spectra.

Leahy et al. 1986, MNRAS, 220, 501. IPC observations.

Odegard 1986, ApJ, 301, 813. TPT at 20.6, 25.6 and 30.9 MHz (24', 19' and 16').

Esposito et al. 1996, ApJ, 461, 820. Possible associated gamma-ray emission.

G206.9 + 2.3

RA: 06^h46^m00^s **Dec**: +06°30′ 1-GHz flux/Jy: 6 Spectral index: 0.5

PKS 0646+06 Size/arcmin: 60 × 40 Type: S?

Radio: Diffuse source near the Monoceros Nebula.

Optical: Filaments detected.

X-ray: Possibly detected.

References:

Davies & Meaburn 1978, A&A, 69, 443. Optical. Nousek et al. 1981, ApJ, 248, 152. HEAO-1 X-ray limit. Graham et al. 1982, A&A, 109, 145. Effelsberg 100-m at 2.7 GHz (4'.4: $S = 4.1 \pm 0.6$), plus review of flux densities. Rosado 1982, RMxAA, 5, 127. Optical. Fesen et al. 1985, ApJ, 292, 29. Optical spectra. Leahy et al. 1986, MNRAS, 220, 501. IPC observations. Odegard 1986, ApJ, 301, 813. TPT at 20.6, 25.6 and 30.9 MHz (24', 19' and 16').

 $\begin{array}{c} {\bf G211.7-1.1} \\ {\bf RA:} \ 06^{\rm h}43^{\rm m}10^{\rm s} \\ {\bf Dec:} \ +00^{\circ}24' \end{array}$

1-GHz flux/Jy: 15? **Spectral index:** 0.5?

Size/arcmin: 70? Type: S?

Radio: Non-thermal source hinted by Bologna survey.

Optical: Coincides with S284, filamentary ring with brighter central area.

References:

Bonsignori-Facondi & Tomasi 1979, A&A, 77, 93. Bologna at 408 MHz (4'.2 \times 110' : $S = 23 \pm 20\%$).

G260.4 - 3.4

$\mathbf{RA:}\ 08^{\mathrm{h}}20^{\mathrm{m}}30^{\mathrm{s}}$	1-GHz flux/Jy: 130
Dec: $-42^{\circ}50'$	Spectral index: 0.5

Puppis A, MSH 08-44 Size/arcmin: 60 × 50 Type: S

Radio: Angular shell, brightest to the E, poorly defined to the W.

Optical: Nebulosity and wisps.

X-ray: Brightest to the E.

Point sources: Central compact X-ray source.

Distance: Association with HI gives 2.2 ± 0.3 kpc.

References:

Green 1971, AuJPh, 24, 773. Molonglo at 408 MHz $(3': S = 198 \pm 20)$.

Goudis & Meaburn 1978, A&A, 62, 283. $H\alpha + NII$] optical image.

Winkler et al. 1981, ApJ, 245, 574. FPCS, Oxygen lines.

Winkler et al. 1981, ApJ, 245, L27. X-ray spectrum.

Petre et al. 1982, ApJ, 258, 22. HRI observations.

Milne et al. 1983, MNRAS, 204, 237. FIRST at 1415 MHz (50"), large scale emission missing.

Teske & Petre 1987, ApJ, 318, 370. Coronal optical line emission. Dubner & Arnal 1988, A&AS, 75, 363. HI and CO observations of surroundings.

Arendt et al. 1990, ApJ, 350, 266. MOST at 843 MHz (44" × 65"), with large scale emission added, plus IR, optical and X-ray observations.

Dubner et al. 1991, AJ, 101, 1466. VLA at 327 MHz $(43^{\prime\prime} \times 73^{\prime\prime})$ and 1.5 GHz $(43^{\prime\prime} \times 77^{\prime\prime})$.

Arendt et al. 1991, ApJ, 368, 474. IR observations.

Milne et al. 1993, MNRAS, 261, 366. Parkes 64-m at 4.75 (4'.5: $S = 59 \pm 5$) and 8.4 GHz (3': $S = 38 \pm 4$), plus polarization.

Berthiaume et al. 1994, ApJ, 425, 132. X-ray spectroscopy.

Sutherland & Dopita 1995, ApJ, 439, 365. Spectrophotometry.

Reynoso et al. 1995, AJ, 110, 318. VLA at 1.4 GHz (90") including neutral hydrogen.

Blair et al. 1995, ApJ, 454, L35. Far UV spectroscopy.

Petre et al. 1996, ApJ, 465, L43. ROSAT of central source.

G261.9 + 5.5

RA: 09^h02^m20^s **Dec**: -38°30'

1-GHz flux/Jy: 10? Spectral index: 0.4? Size/arcmin: 40×30 Type: S

Radio: Faint shell with little limb brightening.

References:

Hill 1967, AuJPh, 20, 297. Parkes 64-m at 2650 MHz (7'.5: S = 7) also S(1410) = 8, S(81.5) = 25. Colomb & Dubner 1980, A&A, 82, 244. Argentine 30-m dish at 1.4 GHz, for HI possibly associated with remnant. Kesteven & Caswell 1987, A&A, 183, 118. MOST at 843 MHz $(44'' \times 71'')$.

G263.9 - 3.3

RA: $08^{h}32^{m}30^{s}$	1-GHz flux/Jy: 1750
Dec: $-45^{\circ}35'$	Spectral index: varies

This refers to the whole Vela XYZ complex, of which X has at times been classified as a separate (filledcentre) remnant.

Radio: Large shell, with flatter spectrum component (Vela X).

Optical: Filaments.

X-ray: Patchy shell, with extensions, central nebula and pulsar.

Point sources: Pulsar within Vela X.

Distance: Vela pulsar implies 0.5 kpc.

References:

Milne 1968, AuJPh, 21, 201. Parkes 64-m at various frequencies, including 408 MHz (48' : $S = 2300 \pm 300$), 635 MHz (31' : $S = 2360 \pm 300$), 1410 MHz (14' : $S = 1640 \pm 300$) and 2650 MHz (7'.5 : $S = 1400 \pm 250$), plus discussion of the distance.

van den Bergh et al. 1973, ApJS, 26, 19. Optical.

Dopita et al. 1977, ApJ, 214, 179. Optical spectroscopy.

Hearn et al. 1980, ApJ, 235, L67. X-ray map.

Milne 1980, A&A, 81, 293. Maps of Vela X with Parkes 64-m at 1.66, 2.7 and 5 GHz (12', 8'.4 and 4'.4).

Weiler & Panagia 1980, A&A, 90, 269. Clarify notation of this region and review previous observations.

Kahn et al. 1985, ApJ, 299, 821. IPC observations.

Harnden et al. 1985, ApJ, 299, 828. IPC and HRI observations of Vela X and pulsar.

Bignami & Caraveo 1988, ApJ, 325, L5. Pulsar proper motion from optical observations.

Dwarakanath 1991, JA&A, 12, 199. Gauribidanur 'T' array at 34.5 MHz ($26' \times 84' : S = 1800$ for Vela X and S = 3900 for Vela YZ), plus review of flux densities.

Bietenholz et al. 1991, ApJ, 376, L41. VLA at 5 GHz in vicinity of pulsar.

Raymond et al. 1991, ApJ, 383, 226. UV spectroscopy.

Willmore et al. 1992, MNRAS, 254, 139. Hard X-ray observations.

Dubner et al. 1992, A&AS, 96, 505. Argentine 30-m at 1.4 GHz (30') of surrounding HI.

Oberlack et al. 1994, ApJS, 92, 433. Gamma ray observations.

Bocchino et al. 1994, ApJ, 437, 209. ROSAT observations of NE.

Aschenbach et al. 1995, Nat, 373, 587. ROSAT of X-ray extensions.

Strom et al. 1995, Nat, 373, 590. Radio of X-ray extensions. Markwardt & Ögelman 1995, Nat, 375, 40. X-ray jet from pulsar.

Jenkins & Wallerstein 1995, ApJ, 440, 227. Optical absorption of associated neutral carbon cloud.

Milne 1995, MNRAS, 277, 1435. Parkes 64-m at 8.4 GHz (3'), inlcuding polarization, of Vela X.

Duncan et al. 1996, MNRAS, 280, 252. Parkes 64-m at 2.4 GHz (8'.9).

Danks & Sembach 1995, AJ, 109, 2627. Optical spectroscopy of background stars.

de Jager et al. 1996, ApJ, 460, 729. Gamma ray detection.

Blair et al. 1995, AJ, 110, 312. UV spectroscopy.

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 62'')$ of part.

${\bf G272.2-3.2}$

RA: 09^h05^m15^s **Dec**: -51°50' 1-GHz flux/Jy: ? Spectral index: ? Size/arcmin: 15? Type: S?

Radio: Not detected (as is near Vela).
X-ray: Centrally brightened.
Optical: Detected.
References:
Greiner et al. 1994, A&A, 286, L35. ROSAT observations, plus optical.

Vela (XYZ) Size/arcmin: 255 Type: C

G279.0 + 1.1**RA:** $09^{h}56^{m}00^{s}$ **1-GHz** flux/Jy: 30? Size/arcmin: 95 **Dec:** $-53^{\circ}00'$ Spectral index: 0.6? Type: S Radio: Faint, incomplete shell. Point sources: Pulsar nearby. **R**eferences: Woermann & Jonas 1988, MNRAS, 234, 971. Hartesbeesthoek 26-m at 1.6 ($30': S = 25.2 \pm 4$) and 2.3 GHz ($20': S = 20.7 \pm 3$). Duncan et al. 1995, MNRAS, 277, 319. Parkes 64-m at 1.4 (18': $S = 28 \pm 3$) and 2.4 GHz (11': $S = 20 \pm 2$), including polarization. Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 53'')$ of part. G284.3 - 1.8MSH 10-53 **RA**: 10^h16^m30^s Size/arcmin: 24? 1-GHz flux/Jy: 11? **Dec:** -58° 45′ Spectral index: 0.3? Type: S Radio: Incomplete, poorly defined shell. **R**eferences: Milne et al. 1989, PASAu, 8, 187. MOST at 843 MHz ($43'' \times 50''$) and Parkes 64-m at 8.4 GHz ($3': S = 5.4 \pm 0.8$) including polarization, plus earlier flux densities. G286.5 - 1.2**RA**: 10^h33^m50^s **1-GHz flux/Jy:** 1.4? **Size/arcmin:** 26×6 **Dec:** -59°26′ Spectral index: ? Type: S? Radio: Double, elongated arc. References: Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 50'' : S = 1.6)$. G289.7 - 0.3**RA:** $10^{h}59^{m}10^{s}$ **1-GHz flux/Jy:** 6.2 Size/arcmin: 18×14 **Dec:** $-60^{\circ}02'$ Spectral index: 0.2? Type: S **Radio:** Incomplete shell. Point sources: Compact radio source near centre. References: Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz ($43'' \times 50'' : S = 6.4 \pm 0.5$), plus Parkes 64-m at 4.5 GHz $(S = 7.5 \pm 2.5)$ and 8.55 GHz $(S = 3.6 \pm 0.9)$. G290.1 - 0.8MSH 11-61A **RA**: 11^h01^m00^s 1-GHz flux/Jy: 42 Size/arcmin: 19×14 **Dec:** $-60^{\circ}40'$ Spectral index: 0.4 Type: S Radio: Elongated, clumpy shell. **Optical:** Filaments detected. X-ray: Detected. **R**eferences: Shaver & Goss 1970, AuJPA, 14, 133. Molonglo at 408 MHz (3') and Parkes 64-m at 5 GHz (4'). Milne & Dickel 1975, AuJPh, 28, 209. Parkes 64-m at 5 GHz (4'.4: S = 20.2). Elliot & Malin 1979, MNRAS, 186, 45P. Optical image and spectra. Kirshner & Winkler 1979, ApJ, 227, 853. Optical. Kesteven & Caswell 1987, A&A, 183, 118. MOST at 843 MHz $(44^{\prime\prime}\times50^{\prime\prime})$ Milne et al. 1989, PASAu, 8, 187. MOST at 843 MHz ($43'' \times 49''$: $S = 45 \pm 11$), and Parkes 64-m at 8.4 GHz ($3' : S = 19.5 \pm 1.0$), including polarization. Seward 1990, ApJS, 73, 781. IPC observations. Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 49'' : S = 43)$.

1-GHz flux/Jy: 16 Spectral index: 0.29 (MSH 11-62) Size/arcmin: 15 × 13 Type: C?

Radio: Centrally brightened core, with surrounding arcs.

X-ray: Centrally brightened.

References:

Shaver & Goss 1970, AuJPA, 14, 133. Molonglo at 408 MHz (3') and Parkes 64-m at 5 GHz (4'). Roger *et al.* 1986, MNRAS, 219, 815. MOST at 843 MHz ($43'' \times 50'' : S = 17.2 \pm 1.0$), and Parkes 64-m at 5 and 8.4 GHz (4'.6 and 3' : $S = 10.4 \pm 0.4$ and 9'.1 ± 0.2), with polarization. Wilson 1986, ApJ, 302, 718. IPC observations.

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 49'' : S = 12.7)$.

G292.0 + 1.8		$\mathrm{MSH}\ 11{-}54$
RA : $11^{h}22^{m}20^{s}$	1-GHz flux/Jy: 15	$\mathbf{Size}/\mathbf{arcmin}: 12 \times 8$
Dec: -59°00′	Spectral index: 0.4	Туре: С?
Radio: Centrally brightened s	source surrounded by a plateau of faint of	emission.

Optical: Oxygen rich.

X-ray: Ring of emission.

References:

Shaver & Goss 1970, AuJPA, 14, 133. Molonglo at 408 MHz (3') and Parkes 64-m at 5 GHz (4').
Goss et al. 1979, MNRAS, 188, 357. Optical spectra.
Lockhart et al. 1977, MNRAS, 179, 147. Fleurs at 1415 MHz (50": S = 13.0).
Clark et al. 1980, MNRAS, 193, 129. SSS spectrum.
Tuohy et al. 1982, ApJ, 260, L65. HRI observations.
Dopita & Tuohy 1984, ApJ, 282, 135. Optical spectra.
Braun et al. 1986, A&A, 162, 259. MOST at 843 MHz (0'.8) and IRAS.
Hughes & Singh 1994, ApJ, 422, 126. EXOSAT spectrum.

Sutherland & Dopita 1995, ApJ, 439, 365. Spectrophotometry.

G293.8 + 0.6

RA: $11^{h}32^{m}40^{s}$ **Dec:** $-60^{\circ}37'$ 1-GHz flux/Jy: 5? Spectral index: 0.6? Size/arcmin: 20 Type: C

Radio: Central source, with faint extended plateau.

References:

Clark et al. 1975, AuJPA, 37, 1. Molonglo at 408 MHz (3': S = 9.0) and Parkes 64-m at 5 GHz (4': S = 2.1). Kesteven & Caswell 1987, A&A, 183, 118. MOST at 843 MHz $(44'' \times 51'')$. Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 49'': S = 2.6)$.

G294.1 - 0.0

RA: 11^h33^m50^s **Dec:** -61°22'

1-GHz flux/Jy: >2? Spectral index: ? Size/arcmin: 40 Type: S

Radio: Faint shell. References:

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 49'' : S > 2)$.

Full listings

G296.1 - 0.5

RA: $11^{h}48^{m}40^{s}$	
Dec: $-62^{\circ}17'$	

1-GHz flux/Jy: 8? Spectral index: 0.6? Size/arcmin: 37×25 Type: S

Incorporates the previously catalogued remnant G296.1-0.7. Has been called G296.05-0.50.

Radio: Irregular shell, with nearby HII regions.

Optical: Detected.

X-ray: Detected.

References:

Clark *et al.* 1975, AuJPA, 37, 1. Molonglo at 408 MHz (3': S = 6.9) and Parkes 64-m at 5 GHz (4': S > 0.74) poor 5-GHz map (of G296.1-0.7).

Longmore et al. 1977, MNRAS, 181, 541. Optical spectra.

van den Bergh 1978, ApJS, 38, 119. Optical. Markert *et al.* 1981, ApJ, 248, L17. IPC observations.

Caswell & Barnes 1983, ApJ, 271, L55. Molonglo at 408 MHz (3': S = 12.4).

- Bignami et al. 1986, ApJ, 302, 606. EXOSAT, IPC and HRI observations.
- Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 48'' : S > 2.4)$.

 ${f G296.5+10.0}\ {f RA:12^{h}07^{m}00^{s}}\ {f Dec:-52^{\circ}10'}$

1-GHz flux/Jy: 48 Spectral index: 0.5 PKS 1209-51/52 Size/arcmin: 90 × 65 Type: S

Has been called G296.5+9.7

Radio: Shell with two bright limbs.

Optical: Detected.

X-ray: Incomplete shell, with central compact source.

Point sources: Compact X-ray source detected within the remnant.

References:

Irvine & Irvine 1974, ApJ, 192, L111. Optical.

Danziger & Dennefeld 1976, PASP, 88, 44. Optical spectra.

Dickel & Milne 1976, AuJPh, 29, 435. Comparison of earlier Parkes 64-m maps at 2.7 GHz (8'.4) and 5 GHz (4'.4).

Tuohy et al. 1979, ApJ, 230, L27. X-ray detection with HEAO-1 A2 experiment.

Ruiz 1983, AJ, 88, 1210. Optical spectra.

Dubner et al. 1986, AJ, 91, 343. Argentine 30-m dish at 1.4 GHz (34'), plus HI.

Kellett et al. 1987, MNRAS, 225, 199. EXOSAT of the west of the remnant, including the compact source.

Kesteven & Caswell 1987, A&A, 183, 118. MOST at 843 MHz $(44'' \times 56'')$.

Matsui et al. 1988, ApJ, 329, 838. IPC and HRI observations, including compact source.

Roger et al. 1988, ApJ, 332, 940. MOST at 843 MHz (44" × 56").

Bignami et al. 1992, ApJ, 389, L67. Optical in vicinity of X-ray source.

Milne & Haynes 1994, MNRAS, 270, 106. Parkes 64-m at 2.4 GHz (8'.3 : $S = 33 \pm 3$), 4.8 GHz (4'.5 : $S = 23.3 \pm 3$) and 8.4 GHz (3'.0 : 18.8 ± 3), including polarization and review of flux densities.

Mereghetti et al. 1996, ApJ, 464, 842. Radio, optical and X-tray observations of central source.

G296.8 - 0.3

RA: $11^{h}56^{m}00^{s}$ **Dec:** $-62^{\circ}18'$

1-GHz flux/Jy: 9 Spectral index: 0.6 1156 - 62

Size/arcmin: 20 × 14 Type: S

Radio: Shell, brighter to the NW.

References:

Caswell et al. 1975, AuJPA, 37, 39. Molonglo at 408 MHz (3': S = 15.0) and Parkes 64-m at 5 GHz (4': S = 3.2). Dickel & Milne 1976, AuJPh, 29, 435. Comparison of earlier Parkes 64-m maps at 2.7 GHz (8'.4) and 5 GHz (4'.4). Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 48'' : S = 9.2)$.

${f G298.5-0.3}$		
RA: $12^{h}10^{m}00^{s}$	1-GHz flux/Jy: 5?	Size/arcmin: 5?
Dec: $-62^{\circ}35'$	Spectral index: 0.4?	Туре: ?
Radio: Not well resolved, may	be part of a larger ring?	
Leferences: ihaver & Goss 1970, AuJPA, 14, 133 Iwang & Markert 1994, ApJ, 431, 83 Whiteoak & Green 1996, A&AS, 118	3. Molonglo at 408 MHz (3') and Parkes 64-m 19. ROSAT upper limit. 3, 329. MOST at 843 MHz ($43'' \times 48'' : S = 1.8$	at 5 GHz (4'). 3).
G298.6 - 0.0		
$RA: 12^{h}11^{m}00^{s}$	1-GHz flux/Jy: 5?	Size/arcmin: 12×9
Dec: $-62^{\circ}20'$	Spectral index: 0.3	Type: S
las been called G298.6–0.1.		
tadio: Incomplete shell, in con	mplex region.	
References: Shaver & Goss 1970, AuJPA, 14, 133 Kesteven & Caswell 1987, A&A, 183 Hwang & Markert 1994, ApJ, 431, 83 Whiteoak & Green 1996, A&AS, 118	8. Molonglo at 408 MHz (3') and Parkes 64-m , 118. MOST at 843 MHz ($44'' \times 50''$). 19. ROSAT upper limit. 5. 329. MOST at 843 MHz ($43'' \times 48'' : S = 7.4$	at 5 GHz (4'). 4).
G299.2 - 2.9		
RA: $12^{h}12^{m}30^{s}$	1-GHz flux/Jy: 0.5?	Size/arcmin: 18×11
Dec: $-65^{\circ} 13'$	Spectral index: ?	Type: S
Radio: Faint source.		
X-ray: Centrally brightened.		
Uptical: Filaments in W. References: Bussser <i>et al.</i> 1996, A&A, 310, L1. R	OSAT detection, plus optical studies.	
G299.6 - 0.5		
$RA: 12^{h}19^{m}00^{s}$	1-GHz flux/Jy: 1.0?	Size/arcmin: 13
Dec: $-62^{\circ}52'$	Spectral index: ?	Type: S
Radio: Faint shell, brightest to	ь Е.	
Leferences: Whiteoak & Green 1996, A&AS, 118	5, 329. MOST at 843 MHz (43 $^{\prime\prime}$ × 48 $^{\prime\prime}$: S = 1.1).
G301.4 - 1.0		
RA: $12^{h}35^{m}00^{s}$	1-GHz flux/Jv: 2.1?	Size/arcmin: 37×23
Dec: -63°33′	Spectral index: ?	Type: S
Radio: Faint, incomplete shell	with possible extensionm to southwest	
Leferences: Whiteoak & Green 1996, A&AS, 118	5, 329. MOST at 843 MHz $(43'' \times 48'' : S = 2.3)$	3).
G302.3 + 0.7		
RA: $12^{h}42^{m}55^{s}$	1-GHz flux/Jy: 5?	Size/arcmin: 17
Dec: $-61^{\circ}52'$	Spectral index: 0.4?	Type: S
Dec: -61°52' Radio: Distorted shell, in com References: Clark et al. 1975, AuJPA, 37, 1. Mol Whiteoak & Green 1996, A&AS, 118	Spectral index: 0.4? plex region, with possibly associated file onglo at 408 MHz (3' : $S = 7.5$) and Parkes 64 3, 329. MOST at 843 MHz (43'' \times 49'' : $S = 3.2$	Type: S ament. -m at 5 GHz $(4' : S = 3.0)$.

Frail *et al.* 1996, AJ, 111, 1651. OH emission near remnant.

Version VI: 1996 August

G304.6 + 0.1		Kes 17
RA: $13^{h}02^{m}50^{s}$	1-GHz flux/ Jy : 14	Size/arcmin: 8
Dec: $-62^{\circ}26'$	Spectral index: 0.5	Type: S
Radio: Incomplete shell.		
Distance: Possible limit of > 9	.7 kpc from HI absorption.	
References:	1 1	
Shaver & Goss 1970, AuJPA, 14, 133. Milne & Dickel 1975, AuJPh, 28, 209 Caswell <i>et al.</i> 1975, A&A, 45, 239. Pe Whiteoak & Green 1996, A&AS, 118, Frail <i>et al.</i> 1996, AJ, 111, 1651. OH e	Molonglo at 408 MHz (3') and Parkes 64-m . Parkes 64-m at 5 GHz (4'.4 : $S = 6.9$). rkes HI absorption. 329. MOST at 843 MHz (43'' \times 48'' : $S = 18$ mission near remnant.	at 5 GHz (4'). 3).
G308.1 - 0.7		
RA: $13^{h}34^{m}10^{s}$	1-GHz flux/ Jy: 1.2?	Size/arcmin: 13
$\mathbf{Dec:}$ $-62^{\circ}49'$	Spectral index: ?	Type: S
Badio : Faint shell		
References:		
Whiteoak & Green 1996, A&AS, 118,	329. MOST at 843 MHz ($43'' \times 48'' : S = 1$.	3).
G308.8 - 0.1		
RA: $13^{h}39^{m}00^{s}$	1-GHz flux/Jy: 15?	Size /arcmin: 20×30 ?
Dec: $-62^{\circ}08'$	Spectral index: 0.4?	Type: C?
Incorporates previous catalogue	d remnant G308.7+0.0.	
Badio : Bright ridge in north a	nd arc to south	
Point sources: Pulsar near cer	nu arc to south.	
References:		
Clark et al. 1975, AuJPA, 37, 1. Molc Milne & Dickel 1975, AuJPh, 28, 209 Caswell et al. 1981, MNRAS, 195, 89. Wilson 1986, ApJ, 302, 718. Lack of c Caswell et al. 1992, ApJ, 399, L151. N Kaspi et al. 1992, ApJ, 399, L155. Pu	onglo at 408 MHz $(3': S = 16.7)$ and Parkes 6 . Parkes 64-m at 5 GHz $(4'.4: S = 6.5)$. . FIRST at 1415 MHz $(50'')$. detection with IPC. MOST at 843 MHz $(43'' \times 49'')$. lsar observations.	64-m at 5 GHz (4' : S = 7.0).
G309.2 - 0.6		
$\mathbf{RA:}\ 13^{\mathrm{h}}43^{\mathrm{m}}00^{\mathrm{s}}$	1-GHz flux/Jy: 7?	Size/arcmin: 15×12
Dec: $-62^{\circ}39'$	Spectral index: 0.4?	Type: S
Has been called G309.2–0.7.		
Radio: Distorted shell.		
References: Clark <i>et al.</i> 1975, AuJPA, 37, 1. Mole Caswell <i>et al.</i> 1981, MNRAS, 195, 89 Kesteven & Caswell 1987, A&A, 183, Whiteoak & Green 1996, A&AS, 118,	onglo at 408 MHz (3' : $S = 10.0$) and Parkes 6 FIRST at 1415 MHz (1'.5). 118. MOST at 843 MHz (44'' × 50''). 329. MOST at 843 MHz (43'' × 48'' : $S = 6$)	64-m at 5 GHz (4' : $S = 3.9$).
G309.8 + 0.0		
RA : $13^{h}47^{m}00^{s}$	1-GHz flux/ Jy : 17	Size/arcmin: 25×19
Dec: $-61^{\circ}50'$	Spectral index: 0.5	Υ τρρε: S
Radio: Distorted shell.		
Point sources: Steep radio spe	ectrum source near the centre of the re	mnant.
References:		
Clark et al. 1975, AuJPA, 37, 1. Molo Caswell et al. 1980, MNRAS, 190, 883 Whiteoak & Green 1996, A&AS, 118,	onglo at 408 MHz ($3': S = 26.4$) and Parkes (1. FIRST at 1415 MHz ($1'$). 329. MOST at 843 MHz ($43'' \times 49'': S > 8$.	64-m at 5 GHz $(4': S = 7.4)$. 8).

Full listings

G310.6 - 0.3

RA: $14^{h}01^{m}40^{s}$ **Dec:** $-62^{\circ}23'$

1-GHz flux/Jy: 5? Spectral index: ?

Kes 20B Size/arcmin: 8 Type: S

Radio: Asymmetric shell.

References:

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 49'' : S = 5.4)$.

G310.8 - 0.4

RA: $14^{h}03^{m}40^{s}$ **Dec:** $-62^{\circ}31'$

1-GHz flux/Jy: 6? Spectral index: ?

Kes 20A Size/arcmin: 12 Type: S

Radio: Arc in E, in complex region. References:

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 49'' : S = 6.9)$.

G311.5 - 0.3**RA:** $14^{h}02^{m}00^{s}$ **Dec:** $-61^{\circ}44'$

1-GHz flux/Jy: 3? Spectral index: 0.5 Size/arcmin: 5 Type: S

Radio: Shell, not well resolved.

References:

Shaver & Goss 1970, AuJPA, 14, 133. Molonglo at 408 MHz (3') and Parkes 64-m at 5 GHz (4'). Caswell & Barnes 1985, MNRAS, 216, 753. Molonglo at 408 MHz (3'). Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 49'' : S = 2.9)$.

G312.4 - 0.4

RA: $14^{h}09^{m}20^{s}$ **Dec:** $-61^{\circ}29'$

1-GHz flux/Jy: 45Spectral index: 0.36 Size/arcmin: 38 Type: S

Radio: Irregular, incomplete shell.

References:

Caswell & Barnes 1985, MNRAS, 216, 753. Molonglo at 408 MHz (3': S = 56). Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz (43'' × 49'': S > 19), plus Parkes 64-m at 4.5 GHz (S = 30±2) and 8.55 GHz ($S = 17 \pm 4$).

Frail et al. 1996, AJ, 111, 1651. OH emission near remnant.

${f G315.4-2.3}$		RCW 86, MSH 14-63
$\mathbf{RA:} 14^{\mathrm{h}}39^{\mathrm{m}}00^{\mathrm{s}}$	1-GHz flux/ Jy : 49	Size/arcmin: 42
Dec: $-62^{\circ}17'$	Spectral index: 0.6	Type: S
Possibly the remnant of the SN	of AD185?	
Radio: Shell, brightest to the S	SW.	
Optical: Bright, radiative filan	nents, with some faint Balmer dominate	d filaments.
X-ray: Partial shell, with bright	it patch.	
${\bf Distance:}\ {\rm Possible}\ {\rm association}$	with OB stars suggests 2.5 kpc.	
van den Bergh et al. 1973, ApJS, 26, Caswell et al. 1975, AuJPA, 37, 39. M Dickel & Milne 1976, AuJPA, 37, 39. M Dickel & Milne 1976, AuJPA, 29, 435 Winkler 1978, ApJ, 221, 220. X-ray c Leibowitz & Danziger 1983, MNRAS Pisarski et al. 1984, ApJ, 277, 710. II Nugent et al. 1984, ApJ, 277, 710. II Nugent et al. 1984, ApJ, 284, 612. X- Kesteven & Caswell 1987, A&A, 183, Long & Blair 1990, ApJ, 358, L13. B Greidanus & Strom 1990, A&A, 240, Kaastra et al. 1992, A&A, 264, 654. C Strom 1994, MNRAS, 268, L5. Histor Chin & Huang 1994, Nat, 371, 398. C Schaefer 1995, AJ, 110, 1793. Questie Whiteoak & Green 1996, A&AS, 118 G315.4 – 0.3	19. Optical. Molonglo at 408 MHz $(3': S = 86)$ and Parkes 6 . Comparison of earlier Parkes 64-m maps at 2 letection. , 204, 273. Optical spectra. PC and HRI observations oray spectrum. 118. MOST at 843 MHz $(44'' \times 50'')$. almer dominated optical filaments. 385. IRAS observations. Ginga X-ray spectra. rical association Questioning of historical association. oning of historical association. , 329. MOST at 843 MHz $(43'' \times 48'' : S > 22)$	64-m at 5 GHz (4' : S = 18.2). .7 GHz (8'.4) and 5 GHz (4'.4).
D A · 14 ^h 32 ^m 10 ^s	1 CHa floor / Inc. 8	Size / promine 24 × 13
Dec: $-60^{\circ}23'$	Spectral index: 0.4	Type: ?
References: Clark <i>et al.</i> 1975, AuJPA, 37, 1. Mol. Caswell <i>et al.</i> 1981, MNRAS, 195, 89 Whiteoak & Green 1996, A&AS, 118 Frail <i>et al.</i> 1996, AJ, 111, 1651. OH et	big on the 408 MHz $(3': S = 15.9)$ and Parkes 64 . FIRST at 1415 MHz $(50'': S = 6.25)$, re-asse , 329. MOST at 843 MHz $(43'' \times 49'': S = 3.1)$ emission near remnant.	4-m at 5 GHz $(4' : S = 4.9)$. ssment of earlier flux densities.).
BA : $14^{h}42^{m}20^{s}$	$1-\mathbf{GHz}$ flux/Jy: 0.8?	Size/arcmin: 25×14
Dec: $-60^{\circ}24'$	Spectral index: ?	
Has been called G315.8–0.0.	-	01
Badio: Faint, distorted shell, w	vith steep-spectrum "iet"?	
References: Kesteven <i>et al.</i> 1987, AuJPh, 40, 855 Whiteoak & Green 1996, A&AS, 118	. MOST at 843 MHz $(44'' \times 50'')$. , 329. MOST at 843 MHz $(43'' \times 50'' : S = 0.9)$).
G316.3 - 0.0		(MSH 14-57)
RA: $14^{h}37^{m}40^{s}$	1-GHz flux/Jy: 20?	Size/arcmin: 29×14
Dec: $-59^{\circ}47'$	Spectral index: 0.4	Type: S
Radio: Distorted shell, with po	ossible "blowout".	
Distance: HI absorption data	$suggests > 7.2 ext{ kpc.}$	
References: Shaver & Goss 1970, AuJPA, 14, 133 Caswell <i>et al.</i> 1975, A&A, 45, 239. P Milne & Dickel 1975, AuJPh, 28, 209 Kesteven & Caswell 1987, A&A, 183, Whiteoak & Green 1996, A&AS, 118	. Molonglo at 408 MHz (3') and Parkes 64-m a arkes HI absorption. 9. Parkes 64-m at 5 GHz (4'.4: $S = 16.7$). 118. MOST at 843 MHz (44'' × 51''). , 329. MOST at 843 MHz (43'' × 50'' : $S = 20$)	ut 5 GHz (4').

G317.3 - 0.2

RA: $14^{h}45^{m}50^{s}$ **Dec:** -59°34′

1-GHz flux/Jy: 4.7? Spectral index: ?

Size/arcmin: 11 Type: S

Radio: Incomplete shell.

References:

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 50'' : S = 5.2)$.

G318.2 + 0.1	
RA: $14^{h}51^{m}00^{s}$	
Dec: $-58^{\circ}51'$	

1-GHz flux/Jy: >3.9? Spectral index: ?

Size/arcmin: 40×35 Type: S

Radio: Faint shell, with central HII region. **R**eferences:

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 50'' : S > 4.3)$.

G318.9 + 0.4

RA: 14^h54^m40^s **Dec:** $-58^{\circ}17'$

1-GHz flux/Jy: 4? Spectral index: 0.2? Size/arcmin: 30×14 Type: C

May not be a SNR?

Radio: Complex arcs, with off-centre core.

References:

Whiteoak 1990, Nat, 347, 157. MOST at 843 MHz $(43'' \times 51'')$. Whiteoak 1993, ApJ, 415, 701. MOST at 843 MHz $(43'' \times 51'')$: $S = 4.8 \pm 0.6$), Parkes 64-m at 4.5 GHz $(4'.7: S = 3.7 \pm 0.2)$ and 8.4 GHz (2'.8 : $S = 3.0 \pm 0.4$) including polarization, and ATCA at 1.4 GHz and 4.8 GHz (11" × 13") of core. Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz (43" × 50" : S = 4.8).

${f G320.4-1.2}$		MSH 15-52, RCW 89
RA: $15^{h}10^{m}30^{s}$	1-GHz flux/Jy: 60?	Size/arcmin: 35
Dec: $-58^{\circ}58'$	Spectral index: 0.4	, Туре: С
Has been suggested as the rem	nant of the SN of AD185?	
Radio: Ragged shell.		
Optical: RCW 89 is the H α e	mitting region to the NW.	
X-ray: Partial shell, central n	ebula and pulsar and possible "jet".	
Point sources: Radio and X-	ray pulsar, plus IR compact source.	
Distance: HL absorption indic	ates 4.2 kpc	
References: Caswell et al. 1975, A&A, 45, 239. H Dickel & Milne 1976, AuJPh, 29, 43 Dopita et al. 1977, ApJ, 214, 179. O Caswell et al. 1981, MNRAS, 195, 8 Seward & Harnden 1982, ApJ, 256, Manchester et al. 1983, ApJ, 267, 698. X Kamper & van den Bergh, 1980, Ap Seward et al. 1984, ApJ, 281, 650. X Trussoni et al. 1990, A&A, 234, 403 Asaoka & Koyama 1990, PASJ, 42,	 'arkes HI absorption. 5. Comparison of earlier Parkes 64-m maps at 2. ptical spectra. 9. FIRST at 1415 MHz (50"). L45. X-ray of pulsar. 31. Radio of pulsar. -ray, Optical and IR. J, 280, L51. Optical expansion. -ray observations of pulsar and nebulosity. EXOSAT observations. 625. Ginga X-ray spectrum. 	.7 GHz (8'.4) and 5 GHz (4'.4).
Arendt 1991, AJ, 101, 2160. IRAS of Milne <i>et al.</i> 1993, MNRAS, 264, 853 and nearby large loop, including p Strom 1994, MNRAS, 268, L5. Histo Chin & Huang 1994, Nat, 371, 398. Matz <i>et al.</i> 1994, AJ, 434, 288. X-r	bservations, including compact source. Parkes 64-m at 4.8 GHz (4'.5 : $S = 37 \pm 7$) an polarization and review of flux densities. orical association. Questioning of historical association. ay observations of pulsar.	ad 8.4 GHz $(3'.0:S=24\pm4)$ of remnant
Du Plessis <i>et al.</i> 1995, ApJ, 453, 740 Greiveldinga <i>et al.</i> 1995, ApJ, 453, 740 Trassoni <i>et al.</i> 1996, A&A, 306, 581 Tamura <i>et al.</i> 1996, PASJ, 48, L33.	5. HartRAO 26-m at 2.3, 5 and 8.5 GHz ($S = 42$ 55. ROSAT observations. ROSAT observations. ASCA observations.	2,35.6,14.5).

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 50'' : S = 62)$.

G320.6 - 1.6

RA: 15^h21^m50^s **Dec:** -59°27'

1-GHz flux/Jy: ? Spectral index: ? Size/arcmin: 60×30 Type: S

Radio: Faint shell, overlapping G320.4-1.2 in W. References: Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 50'' : S > 9.3)$.

 $\begin{array}{c} {\bf G321.9-1.1} \\ {\bf RA:} \ 15^{\rm h} 19^{\rm m} 50^{\rm s} \\ {\bf Dec:} \ -58^{\circ} 02' \end{array}$

1-GHz flux/Jy: >3.4? Spectral index: ? Size/arcmin: 28 Type: S

Radio: Faint shell. References:

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 51'' : S > 3.8)$.

G321.9 - 0.3**RA:** $15^{h}16^{m}45^{s}$ 1-GHz flux/Jy: 13Size/arcmin: 31×23 **Dec:** $-57^{\circ}23'$ Spectral index: 0.3 Type: S Radio: Shell brighter to the W, with Cir X-1 to N. **Point sources:** Compact, probably thermal source at S edge. **R**eferences: Clark et al. 1975, AuJPA, 37, 1. Molonglo at 408 MHz (3': S = 18.3) and Parkes 64-m at 5 GHz (4': S = 7.8). Kesteven & Caswell 1987, A&A, 183, 118. MOST at 843 MHz (44" × 52"). Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 51'' : S > 8.3)$. G322.5 - 0.1**RA**: 15^h19^m30^s 1-GHz flux/Jy: 1.5 Size/arcmin: 15 **Dec:** -56°55′ Spectral index: 0.4 Type: C Radio: Shell with central extended source. Point sources: PN Pe 2-8 within boundary. References: Whiteoak 1992, MNRAS, 256, 121. MOST at 843 MHz $(43'' \times 51'' : S = 2.0 \pm 0.3)$. Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz ($43'' \times 51'' : S = 1.7$), plus Parks 64-m at 4.5 GHz (= 0.89±0.13). G323.5 + 0.1**RA**: 15^h24^m50^s 1-GHz flux/Jy: 3? Size/arcmin: 13 **Dec:** $-56^{\circ}11'$ Spectral index: 0.4? Type: S Radio: Distorted shell, confused with thermal emission. **Point sources:** Compact, probably thermal source near centre. **R**eferences: Clark et al. 1975, AuJPA, 37, 1. Molonglo at 408 MHz (3': S = 4.2) and Parkes 64-m at 5 GHz (4': S = 1.5). Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 52'' : S = 4.2)$. MSH 15-56 G326.3 - 1.8**RA**: 15^h49^m00^s 1-GHz flux/Jy: 145 Size/arcmin: 38 **Dec:** $-56^{\circ}00'$ Spectral index: varies Type: C Has been called G326.2-1.7. Radio: Shell, with flat spectrum core. **Optical:** Emission around the shell. X-ray: Shell, with central extended emission. **References**: Clark et al. 1975, AuJPA, 37, 75. Molonglo at 408 MHz (3': S = 180). Caswell et al. 1975, A&A, 45, 239. Parkes HI absorption. Milne et al. 1979, MNRAS, 188, 437. FIRST at 1415 MHz (0'.8: S > 95) and Parkes 64-m at 14.7 GHz (2'.2: $S = 69 \pm 8$). van den Bergh 1979, ApJ, 227, 497. Optical observations. Zealey et al. 1979, A&AS, 38, 39. Optical observations. Dennefeld 1980, PASP, 92, 603. Optical spectra. Kesteven & Caswell 1987, A&A, 183, 118. MOST at 843 MHz (44" × 53"). Milne et al. 1989, PASAu, 8, 187. MOST at 843 MHz $(43'' \times 52'' : S = 153 \pm 40)$, and Parkes 64-m at 8.4 GHz $(3' : S = 68 \pm 5)$, including polarization. Seward 1990, ApJS, 73, 781. IPC observations. Kassim et al. 1993, ApJ, 419, 733. ROSAT image. Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 52'' : S > 130)$.

G327.1 - 1.1

RA : 15 ^h 50 ^m 30 ^s	1-GHz flux/Jy: 7?	Size
Dec: $-55^{\circ}00'$	Spectral index: ?	

Radio: Shell, with off-centre core.

X-ray: Detected.

References:

Milne & Dickel 1974, AuJPh, 27, 549. Parkes 64-m at 2.7 GHz (8'.4: $S = 10 \pm 15\%$).

Clark et al. 1975, AuJPA, 37, 1. Molonglo at 408 MHz (3': S = 10.6) and Parkes 64-m at 5 GHz (4': S = 4.3).

Lamb & Markert 1981, ApJ, 244, 94. IPC observations.

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 52'' : S = 7.6)$.

G327.4 + 0.4		Kes 27
RA: $15^{h}44^{m}30^{s}$	1-GHz flux/Jy: 30?	Size/arcmin: 21
Dec: $-53^{\circ}40'$	Spectral index: 0.6	Type: S
Has been called G327.3+0.4 a	nd G327.3+0.5.	

Radio: Incomplete, multi-arc shell, brightest to the SE.

X-ray: Compact and extended emission near centre of remnant.

References:

Caswell et al. 1975, AuJPA, 37, 39. Molonglo at 408 MHz (3': S = 58) and Parkes 64-m at 5 GHz (4': S = 12.4).
Dickel & Milne 1976, AuJPh, 29, 435. Comparison of earlier Parkes 64-m maps at 2.7 GHz (8'.4) and 5 GHz (4'.4).
Lamb & Markert 1981, ApJ, 244, 94. IPC observations.
Kesteven & Caswell 1987, A&A, 183, 118. MOST at 843 MHz (44'' × 55'').
Milne et al. 1989, PASAu, 8, 187. MOST at 843 MHz (43'' × 53'' : S = 32.2±6), and Parkes 64-m at 8.4 GHz (3': S = 9.4±0.8), including polarization.
Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz (43'' × 53'' : S = 25).

 $\begin{array}{c} {\bf G327.4+1.0} \\ {\bf RA:15^{h}43^{m}00^{s}} \\ {\bf Dec:-53^{\circ}11'} \end{array}$

1-GHz flux/Jy: 1.9? Spectral index: ?

Size/arcmin: 14 Type: S

Radio: Asymmetric shell. References:

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz ($43'' \times 54'' : S = 2.1$).

ize/arcmin: 18 Type: C

${f G327.6+14.6}$		SN1006, PKS 1459-41
$\mathbf{RA:} 14^{\mathrm{h}}59^{\mathrm{m}}35^{\mathrm{s}}$	1-GHz flux/Jy: 19	Size/arcmin: 30
Dec: $-41^{\circ}44'$	Spectral index: 0.6	Type: S
This is the remnant of the SN of AD100	06.	
Radio: Shell, with two bright arcs.		
Optical: Filaments to the NW, with b	road H $lpha$ component.	
X-ray: Thermal shell, with non-therma	al limb-brightened arcs.	
Point sources: The Schweizer-Middled	ditch star is near the middle of the ren	nnant.
Distance: Optical spectra and proper	motion indicate 1.7-3.1 kpc.	
References: van den Bergh 1976, ApJ, 208, L17. Optical. Dickel & Milne 1976, AuJPh, 29, 435. Compar Pskovskii 1978, SvA, 22, 420. Distance from h Becker et al. 1980, ApJ, 240, L33. SSS and otl Schweizer & Middleditch 1980, ApJ, 241, 1036 Pye et al. 1981, MNRAS, 194, 569. IPC obser Caswell et al. 1983, MNRAS, 204, 921. FIRST Reynolds & Gilmore 1986, AJ, 92, 1138. VLA Kirshner et al. 1987, ApJ, 315, L135. Broad H Kesteven & Caswell 1987, A&A, 183, 118. MC Fesen et al. 1988, ApJ, 327, 164. UV absorptic Roger et al. 1988, ApJ, 332, 740. MOST at 84 Long et al. 1988, ApJ, 333, 749. Optical prope Jones & Pye 1989, MNRAS, 238, 567. EXOSA Leahy et al. 1991, ApJ, 374, 218. HEAO-1 X-r Wu et al. 1993, ApJ, 416, 247. UV spectra. Ozaki et al. 1994, PASJ, 46, 367. X-ray observ Reynolds & Gilmore 1993, AJ, 106, 1566. VLA at 1.3 Raymond et al. 1995, Nat, 378, 255. ASCA obs Willingale et al. 1996, MNRAS, 278, 749. ROS	rison of earlier Parkes 64-m maps at 2.7 GHz istorical records. her X-ray spectra.). Possible stellar remnant. vations. C at 1415 MHz (77"). at 1.37 and 1.67 GHz (16" \times 20"). a optical component. OST at 843 MHz (44" \times 66"). on spectra to the Schweizer-Middleditch star. 3 MHz (44" \times 66" : $S = 17.5 \pm 1.5$). er motion for distance. T observations. eay spectra. rations. at 1.37 and 1.67 GHz (24"), including polari 57 and 1.67 GHz (10" \times 14"), for proper moti spectroscopy. ervations. SAT observations.	(8'.4) and 5 GHz (4'.4). zation. on studies.

G328.4 + 0.2

RA: $15^{h}51^{m}40^{s}$ **Dec:** $-53^{\circ}08'$ 1-GHz flux/Jy: 16? Spectral index: 0.2 (MSH 15-57) Size/arcmin: 6 Type: F

Radio: Amorphous emission.

References:

Shaver & Goss 1970, AuJPA, 14, 133. Molonglo at 408 MHz (3') and Parkes 64-m at 5 GHz (4'). Caswell *et al.* 1980, MNRAS, 190, 881. FIRST at 1415 MHz (50"). Wilson 1986, ApJ, 302, 718. Lack of detection with IPC. Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz ($43'' \times 54'' : S = 15$).

G329.7 + 0.4

RA: $15^{h}57^{m}30^{s}$ **Dec:** $-52^{\circ}11'$

1-GHz flux/Jy: >34? Spectral index: ? Size/arcmin: 40 × 33 Type: S

Radio: Diffuse shell, in complex region.

References:

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 53'' : S > 38)$.

RA: $15^{h}05^{m}00^{s}$ Dec: $-39^{\circ}30'$		Lupus Loop
Dec: $-39^{\circ}30'$	1-GHz flux/Jy: 350?	Size/arcmin: 180?
	Spectral index: 0.5?	΄ Τype: S
Badio: Low surface brightness	loop with HI shell	
X-ray: Detected		
References		
Milne 1971, AuJPh, 24, 757. Parkes (Milne & Dickel 1974, AuJPh, 27, 549 Toor 1980, A&A, 85, 184. X-ray imag Colomb & Dubner 1982, A&A, 112, 1 Leahy et al. 1991, ApJ, 374, 218. HE Ozaki et al. 1994, PASJ, 46, 367. X-r	54-m at 408 MHz (48'), 635 MHz (31') and 1410 . Parkes 64-m at 2.7 GHz (8'.4: $S = 120 \pm 30\%$ ge and spectrum. .41. Argentine 30-m dish at 1.42 GHz (30'), HI 4 AO-1 X-ray spectra. ay observations.) MHz (15').). observations.
G330.2 + 1.0		
B A: $15^{\rm h}57^{\rm m}20^{\rm s}$	1-GHz flux/Jv: 5?	Size/arcmin: 11
Dec: $-51^{\circ}26'$	Spectral index: 0.3	Type: S?
	• • • • • • • • • • • • • • •	<i></i>
Radio: Clumpy non-thermal en	mission, possibly a distorted shell.	
Keterences: Clark et al. 1975, AuJPA, 37, 1. Mol. Caswell et al. 1983, MNRAS, 204, 91 Whiteoak & Green 1996, A&AS, 118	onglo at 408 MHz $(3': S = 8.6)$ and Parkes 64-r 5. FIRST at 1415 MHz $(52'' \times 47'')$, and MOST , 329. MOST at 843 MHz $(43'' \times 55'': S = 4.7)$.	n at 5 GHz $(4': S = 4.0)$. C at 843 MHz $(43'' \times 55'')$.
G332.0 + 0.2		
RA : $16^{h}09^{m}30^{s}$	1-GHz flux/Jv: 8?	Size/arcmin: 12
Dec: $-50^{\circ}45'$	Spectral index: 0.5	Type: S
n i' T i i i ii		
Kadio: Incomplete shell. References: Shaver & Goss 1970, AuJPA, 14, 133 Kesteven & Caswell 1987, A&A, 183, Whiteoak & Green 1996, A&AS, 118	. Molonglo at 408 MHz (3') and Parkes 64-m at 118. MOST at 843 MHz ($44'' \times 57''$). , 329. MOST at 843 MHz ($43'' \times 55'' : S = 8.9$).	5 GHz (4').
Kadio: Incomplete shell. References: Shaver & Goss 1970, AuJPA, 14, 133 Kesteven & Caswell 1987, A&A, 183, Whiteoak & Green 1996, A&AS, 118 G332.4 - 0.4	. Molonglo at 408 MHz (3') and Parkes 64-m at 118. MOST at 843 MHz ($44'' \times 57''$). , 329. MOST at 843 MHz ($43'' \times 55'' : S = 8.9$).	5 GHz (4'). RCW 103
Radio: Incomplete shell. References: Shaver & Goss 1970, AuJPA, 14, 133 Kesteven & Caswell 1987, A&A, 183, Whiteoak & Green 1996, A&AS, 118 G332.4 - 0.4 RA: 16 ^h 13 ^m 45 ^s	. Molonglo at 408 MHz (3') and Parkes 64-m at 118. MOST at 843 MHz ($44'' \times 57''$). , 329. MOST at 843 MHz ($43'' \times 55'' : S = 8.9$).	5 GHz (4'). RCW 103
Kadio: Incomplete shell. References: Shaver & Goss 1970, AuJPA, 14, 133 Kesteven & Caswell 1987, A&A, 183, Whiteoak & Green 1996, A&AS, 118 G332.4 - 0.4 RA: 16 ^h 13 ^m 45 ^s Dec: -50°55′	. Molonglo at 408 MHz (3') and Parkes 64-m at 118. MOST at 843 MHz (44" × 57"). 329. MOST at 843 MHz (43" × 55" : S = 8.9). 1-GHz flux/Jy: 28 Spectral index: 0.5	5 GHz (4'). RCW 103 Size/arcmin: 10 Type: S
Radio: Incomplete shell. References: Shaver & Goss 1970, AuJPA, 14, 133 Kesteven & Caswell 1987, A&A, 183, Whiteoak & Green 1996, A&AS, 118 G332.4 - 0.4 RA: 16 ^h 13 ^m 45 ^s Dec: -50°55′	. Molonglo at 408 MHz (3') and Parkes 64-m at 118. MOST at 843 MHz (44" × 57"). , 329. MOST at 843 MHz (43" × 55" : S = 8.9). 1-GHz flux/Jy: 28 Spectral index: 0.5	5 GHz (4'). RCW 103 Size/arcmin: 10 Type: S
Radio: Incomplete shell. References: Shaver & Goss 1970, AuJPA, 14, 133 Kesteven & Caswell 1987, A&A, 183, Whiteoak & Green 1996, A&AS, 118 G332.4 - 0.4 RA: 16 ^h 13 ^m 45 ^s Dec: -50°55' Radio: Shell, brightest to the S	. Molonglo at 408 MHz (3') and Parkes 64-m at 118. MOST at 843 MHz (44" × 57"). , 329. MOST at 843 MHz (43" × 55" : S = 8.9). 1-GHz flux/Jy: 28 Spectral index: 0.5 5.	5 GHz (4'). RCW 103 Size/arcmin: 10 Type: S
Radio: Incomplete shell. References: Shaver & Goss 1970, AuJPA, 14, 133 Kesteven & Caswell 1987, A&A, 183 Whiteoak & Green 1996, A&AS, 118 G332.4 - 0.4 RA: $16^{h}13^{m}45^{s}$ Dec: $-50^{\circ}55'$ Radio: Shell, brightest to the S Optical: Filaments correspond	. Molonglo at 408 MHz (3') and Parkes 64-m at 118. MOST at 843 MHz (44" × 57"). 329. MOST at 843 MHz (43" × 55" : S = 8.9). 1-GHz flux/Jy: 28 Spectral index: 0.5 5. well to the radio shell.	5 GHz (4'). RCW 103 Size/arcmin: 10 Type: S
Radio: Incomplete shell. References: Shaver & Goss 1970, AuJPA, 14, 133 Kesteven & Caswell 1987, A&A, 183 Whiteoak & Green 1996, A&AS, 118 G332.4 - 0.4 RA: $16^{h}13^{m}45^{s}$ Dec: $-50^{\circ}55'$ Radio: Shell, brightest to the S Optical: Filaments correspond X-ray: Detected, with point so	. Molonglo at 408 MHz (3') and Parkes 64-m at 118. MOST at 843 MHz (44" × 57"). , 329. MOST at 843 MHz (43" × 55" : S = 8.9). 1-GHz flux/Jy: 28 Spectral index: 0.5 5. well to the radio shell. urce near centre.	5 GHz (4'). RCW 103 Size/arcmin: 10 Type: S
Radio: Incomplete shell. References: Shaver & Goss 1970, AuJPA, 14, 133 Kesteven & Caswell 1987, A&A, 183 Whiteoak & Green 1996, A&AS, 118 G332.4 - 0.4 RA: $16^{h}13^{m}45^{s}$ Dec: $-50^{\circ}55'$ Radio: Shell, brightest to the S Optical: Filaments correspond X-ray: Detected, with point so Point sources: Detected in X-	. Molonglo at 408 MHz (3') and Parkes 64-m at 118. MOST at 843 MHz (44" × 57"). , 329. MOST at 843 MHz (43" × 55" : S = 8.9). 1-GHz flux/Jy: 28 Spectral index: 0.5 5. well to the radio shell. urce near centre. rays.	5 GHz (4'). RCW 103 Size/arcmin: 10 Type: S
Radio: Incomplete shell. References: Shaver & Goss 1970, AuJPA, 14, 133 Kesteven & Caswell 1987, A&A, 183 Whiteoak & Green 1996, A&AS, 118 G332.4 - 0.4 RA: $16^{h}13^{m}45^{s}$ Dec: $-50^{\circ}55'$ Radio: Shell, brightest to the S Optical: Filaments correspond X-ray: Detected, with point so Point sources: Detected in X- Distance: HI absorption indica	. Molonglo at 408 MHz (3') and Parkes 64-m at 118. MOST at 843 MHz (44" × 57"). 329. MOST at 843 MHz (43" × 55" : S = 8.9). 1-GHz flux/Jy: 28 Spectral index: 0.5 3. well to the radio shell. urce near centre. rays. ttes 3.3 kpc.	5 GHz (4'). RCW 103 Size/arcmin: 10 Type: S

G332.4 + 0.1MSH 16-51, Kes 32 **RA**: 16^h11^m30^s Size/arcmin: 15 1-GHz flux/Jy: 26**Dec:** $-50^{\circ}35'$ Spectral index: 0.5 Type: S Has been called G332.4+0.2. Radio: Distorted shell, with thermal jet and plume adjacent. **Point sources:** Pulsar nearby. **References**: Shaver & Goss 1970, AuJPA, 14, 133. Molonglo at 408 MHz (3') and Parkes 64-m at 5 GHz (4'). Roger et al. 1985, Nat, 316, 44. MOST at 843 MHz $(44'' \times 57'')$. Caraveo 1993, ApJ, 415, L111. Nearby pulsar. Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 56'' : S = 29)$. Frail et al. 1996, AJ, 111, 1651. OH emission near remnant. G335.2 + 0.1**RA**: 16^h24^m00^s 1-GHz flux/Jy: 16 Size/arcmin: 21 **Dec:** $-48^{\circ}40'$ Spectral index: 0.5 Type: S Radio: Well defined shell. **Point sources:** Old pulsar within remnant boundary. **R**eferences: Clark et al. 1975, AuJPA, 37, 1. Molonglo at 408 MHz (3': S = 27.1) and Parkes 64-m at 5 GHz (4': S = 8.6). Kaspi et al. 1996, AJ, 111, 2028. Pulsar observations. Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz ($43'' \times 57'' : S = 16$). G336.7 + 0.5**RA**: 16^h28^m30^s 1-GHz flux/Jy: 6 Size/arcmin: 14×10 **Dec:** -47°13′ Spectral index: 0.5 Type: S **Radio:** Irregular shell. References: Shaver & Goss 1970, AuJPA, 14, 133. Molonglo at 408 MHz (3') and Parkes 64-m at 5 GHz (4'). Kesteven & Caswell 1987, A&A, 183, 118. $\widetilde{\text{MOST}}$ at 843 MHz (44" \times 60"). Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 58'' : S = 6.1)$. G337.0 - 0.1(CTB 33)**RA**: 16^h32^m10^s 1-GHz flux/Jy: 17? Size/arcmin: $13 \times 7?$ **Dec:** $-47^{\circ}27'$ Spectral index: 0.5? Type: S? **Radio:** Possible shell, confused by nearby thermal sources. **R**eferences: Shaver & Goss 1970, AuJPA, 14, 133. Molonglo at 408 MHz (3') and Parkes 64-m at 5 GHz (4'). Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 58'' : S = 21)$. Frail et al. 1996, AJ, 111, 1651. OH emission near remnant, including compact sources (masers). G337.2 - 0.7**RA**: 16^h35^m45^s **1-GHz flux/Jy:** 2? Size/arcmin: 6 **Dec:** $-47^{\circ}45'$ Spectral index: 0.7 Type: S Radio: Shell, not well resolved. **R**eferences:

Clark et al. 1975, AuJPA, 37, 1. Molonglo at 408 MHz (3': S = 3.8) and Parkes 64-m at 5 GHz (4': S = 0.70). Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 58'': S = 2.0)$.

Full listings

${f G337.3}+{f 1.0}$		Kes 40
RA: $16^{h}29^{m}00^{s}$	1-GHz flux/Jy: 16	$\mathbf{Size}/\mathbf{arcmin:}\ 15 imes12$
Dec: $-46^{\circ}30'$	Spectral index: 0.55	Type: S
Radio: Nearly complete shell.		
References: Caswell et al. 1975, AuJPA, 37, 39. Dickel & Milne 1976, AuJPh, 29, 43 Kesteven & Caswell 1987, A&A, 18: Milne et al. 1989, PASAu, 8, 187. MC including polarization. Whiteoak & Green 1996, A&AS, 11	Molonglo at 408 MHz $(3': S = 24.6)$ and Parke 5. Comparison of earlier Parkes 64-m maps at 2 8, 118. MOST at 843 MHz $(44'' \times 61'')$. ST at 843 MHz $(43'' \times 59'': S = 14.8 \pm 3.0)$, and 8, 329. MOST at 843 MHz $(43'' \times 59'': S = 20)$	es 64-m at 5 GHz (4' : $S = 7.2$). 2.7 GHz (8'.4) and 5 GHz (4'.4). Parkes 64-m at 8.4 GHz (3' : $S = 5.1 \pm 0.6$),
G337.8 - 0.1		Kes 41
R.A: $16^{h}35^{m}20^{s}$	1-GHz flux/Jv: 18	Size /arcmin: 9×6
Dec: $-46^{\circ}53'$	Spectral index: 0.5	Type: S
Radio: Distorted shell.		
Distance: HI absorption sugg	ests > 9.3 kpc.	
References: Shaver & Goss 1970, AuJPA, 14, 13 Caswell <i>et al.</i> 1975, A&A, 45, 239. I Whiteoak & Green 1996, A&AS, 11	3. Molonglo at 408 MHz (3') and Parkes 64-m a Parkes HI absorption. 8, 329. MOST at 843 MHz ($43'' \times 59'' : S = 18$)	at 5 GHz (4').).
G338.1 + 0.4		
RA: $16^{h}34^{m}20^{s}$	1-GHz flux/Jy: 4?	Size/arcmin: 15?
Dec: -46° 18′	Spectral index: 0.4	Type: S
Optical: Detected. References: Shaver & Goss 1970, AuJPA, 14, 13 Zealey et al. 1979, A&AS, 38, 39. O Whiteoak & Green 1996, A&AS, 11	3. Molonglo at 408 MHz (3') and Parkes 64-m a ptical detection. 8, 329. MOST at 843 MHz (43'' \times 59'' : $S = 3.8$	at 5 GHz (4'). 3).
G338.3 - 0.0		
RA : 16 ^h 37 ^m 20 ^s	1-GHz flux/ Jy : 7?	Size/arcmin: 8
Dec: $-46^{\circ}28'$	Spectral index: ?	Type: S
Radio: Irregular shell, in com References: Shaver & Goss 1970, AuJPA, 14, 13 Whiteoak & Green 1996, A&AS, 11	plex region. 3. Molonglo at 408 MHz (3') and Parkes 64-m a 8, 329. MOST at 843 MHz (43'' $ imes$ 59'' : $S = 7.4$	at 5 GHz (4'). 1).
G338.5 + 0.1		
RA: $16^{h}37^{m}30^{s}$	1-GHz flux/Jy: 12?	Size/arcmin: 9
Dec: $-46^{\circ} 13'$	Spectral index: ?	Туре: ?
Radio: Circle of non-thermal	emission in complex region, not well defi	ined.
References: Shaver & Goss 1970, AuJPA, 14, 13 Whiteoak & Green 1996, A&AS, 11	3. Molonglo at 408 MHz (3') and Parkes 64-m a 8, 329. MOST at 843 MHz (43 $^{\prime\prime}$ $ imes$ 59 $^{\prime\prime}$: S = 13)	at 5 GHz $(4')$.

${f G340.4} + {f 0.4}$		
RA: $16^{h}42^{m}55^{s}$ Dec: $-44^{\circ}34'$	1-GHz flux/Jy: 5 Spectral index: 0.4	Size/arcmin: 10 × 7 Type: S
Radio: Distorted shell, elong	ated east-west.	
References: Clark et al. 1975, AuJPA, 37, 1. M. Caswell et al. 1983, MNRAS, 203, 1	blonglo at 408 MHz $(3': S = 8.2)$ and Parkes 64 595 FIRST at 1415 MHz $(50'')$	4-m at 5 GHz $(4': S = 2.9)$.
Dubner et al. 1996, AJ, 111, 1304. Whiteoak & Green 1996, A&AS, 11	VLA at 330 MHz (75" \times 48" : $S = 9.8 \pm 0.9$) ar .8, 329. MOST at 843 MHz (43" \times 61" : $S = 5.9$	ad 1.4 GHz $(27'' \times 9'' : S = 3.6 \pm 0.1)$. 9).
B A: $16^{h}44^{m}05^{s}$	1-GHz flux/Jv: 5?	Size/arcmin: 6
Dec: $-44^{\circ}29'$	Spectral index: 0.4?	Type: S
Radio: Incomplete shell.		
Optical: Possible associated :	filaments.	
References: Clark <i>et al.</i> 1975, AuJPA, 37, 1. M. Caswell <i>et al.</i> 1983, MNRAS, 203, 3 Zachar <i>et al.</i> 1970, A&AS, 28, 20, 6	blonglo at 408 MHz $(3' : S = 7.0)$ and Parkes 64 595. FIRST at 1415 MHz $(50'')$.	4-m at 5 GHz $(4': S = 2.8)$.
Dubner et al. 1993, A&AS, 35, 35, C Dubner et al. 1996, AJ, 111, 1304. Whiteoak & Green 1996, A&AS, 11	VLA at 330 MHz $(75'' \times 48'' : S = 9.2 \pm 0.9)$ ar 8, 329. MOST at 843 MHz $(43'' \times 61'' : S = 4.8)$	ad 1.4 GHz (27" × 9" : $S = 5.8 \pm 0.1$). 5).
G341.2 + 0.9		
RA: $16^{h}44^{m}00^{s}$ Dec: $-43^{\circ}42'$	1-GHz flux/Jy: 1.5? Spectral index: 0.6?	$\begin{array}{l} \mathbf{Size}/\mathbf{arcmin:} \ 16\times22\\ \mathbf{Type:} \ C? \end{array}$
Radio: Incomplete shell, with Point sources: Pulsar in W.	extension to SW.	
References: Frail <i>et al.</i> 1994, ApJ, 437, 781. VL	A at 330 MHz $(54'' imes 116'': S = 3.0 \pm 0.1)$ and	l 1.4 GHz (21" × 25" : $S = 12.5 \pm 0.05$).
G341.9 - 0.3		
RA: $16^{h}51^{m}25^{s}$	1-GHz flux/Jy: 2.5	Size/arcmin: 7
Dec: $-43^{\circ}56'$	Spectral index: 0.5	Type: S
Radio: Incomplete shell, brig	htest to NE.	
References: Caswell et al. 1975, AuJPA, 37, 39. & Clark 1975, AuJPA, 37, 57 for Caswell et al. 1983, MNRAS, 203, 4 Dubner et al. 1996, AJ, 111, 1304. Whiteoak & Green 1996, A&AS, 11	Molonglo at 408 MHz (3' : $S = 7.4$) and Parket the maps. 595. FIRST at 1415 MHz (50"), revision of prev VLA at 1.4 GHz (35" × 11" : $S = 2.2 \pm 0.1$). 8, 329. MOST at 843 MHz (43" × 62" : $S = 2.2$	s 64-m at 5 GHz ($4': S = 1.7$), see Caswel vious flux densities. 7).
<u></u>		
$rac{1}{3}42.0 - 0.2$		
KA: $16^{\circ}51^{\circ}15^{\circ}$ Dec: $-43^{\circ}48'$	I-GHz flux/Jy: 3.5? Spectral index: 0.4?	Size/arcmin: 12×9 Type: S
Radio: Distorted shell. References:		

Caswell et al. 1983, MNRAS, 203, 595. FIRST at 1415 MHz (50"), estimate S(408) = 5, S(5000) = 2 from previous maps. Dubner et al. 1996, AJ, 111, 1304. VLA at 1.4 GHz ($35'' \times 11''$). Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz ($43'' \times 62'' : S = 3.5$).

_____Version VI: 1996 August_____

G342.1 + 0.9		
RA: $16^{h}47^{m}10^{s}$ Dec: $-42^{\circ}59'$	1-GHz flux/Jy: 0.5? Spectral index: ?	Size/arcmin: 10 × 9 Type: S
Radio: Incomplete shell.		
References: Whiteoak & Green 1996, A&AS, 11	8, 329. MOST at 843 MHz (43" \times 63" : $S = 0$.	6).
G343.1 - 2.3		
RA: $17^{h}04^{m}25^{s}$	1-GHz flux/Jy: 8?	Size/arcmin: 32?
Dec: $-44^{\circ}12'$	Spectral index: 0.5?	Туре: С?
Radio: Incomplete shell?		
Point sources: Pulsar near e	dge.	
References: McAdam et al. 1993, Nat, 361, 516. Frail et al. 1994, ApJ, 437, 781. VL. Becker et al. 1995, A&A, 298, 528.	MOST at 843 MHz (smoothed to 2'). A at 330 MHz ($56'' \times 111'' : S = 10.6$) and 1.4 ROSAT of pulsar, and limit for remnant.	GHz (22 $^{\prime\prime}$ \times 27 $^{\prime\prime}$) near pulsar.
G343.1 - 0.7		
RA: $16^{h}56^{m}50^{s}$	1-GHz flux/Jy: 7.8	Size/arcmin: 27×21
Dec: $-43^{\circ}10'$	Spectral index: 0.55	Type: S
Whiteoak & Green 1996, A&AS, 1 $(S = 3.9 \pm 0.6)$ and 8.55 GHz (S G344.7 - 0.1	.18, 329. MOST at 843 MHz $(43'' \times 63'' : 5)$ = 2.4 ± 0.5)	58.5 ± 0.6), plus Parkes 64-m at 4.5 GH
$\mathbf{B} \mathbf{A} \cdot 17^{\mathrm{h}} 00^{\mathrm{m}} 20^{\mathrm{s}}$	1-GHz flux/Jy: 2.5?	Size/arcmin: 10
Dec: $-41^{\circ}38'$	Spectral index: 0.5	Туре: С?
Radio: Aysmmetric shell, wit References: Clark et al. 1975, AuJPA, 37, 1. Mo Dubner et al. 1993, AJ, 105, 2251. V Whiteoak & Green 1996, A&AS, 11	h possible core. longlo at 408 MHz (3' : $S = 4.7$) and Parkes 6 /LA at 1.47 GHz (30'' × 43'' : $S = 1.7 \pm 0.1$). 8, 329. MOST at 843 MHz (43'' × 65'' : $S = 2$.	4-m at 5 GHz (4' : $S = 1.3$). 5).
${f G345.7-0.2}$		
RA: $17^{h}03^{m}50^{s}$	1-GHz flux/Jy: 0.6?	Size/arcmin: 6
Dec: $-40^{\circ}49'$	Spectral index: ?	Type: S
Radio: Poorly defined diffuse	shell.	
Point sources: Old pulsar ne	arby.	
References: Whiteoak & Green 1996, A&AS, 11	8, 329. MOST at 843 MHz $(43'' \times 66'' : S = 0.$	7).
G346.6 - 0.2		
RA: $17^{h}06^{m}50^{s}$	1-GHz flux/Jy: 8?	Size/arcmin: 8
Dec: $-40^{\circ}07'$	Spectral index: 0.5?	Type: S
Radio: Irregular shell. References: Clark et al. 1975, AuJPA, 37, 1. Mo Dubner et al. 1993, AJ, 105, 2251. V Whiteoak & Green 1996, A&AS, 11	longlo at 408 MHz $(3': S = 14.9)$ and Parkes VLA at 1.47 GHz $(31'' \times 43'': S = 8.1 \pm 0.9)$. 8, 329. MOST at 843 MHz $(43'' \times 67'': S = 8.1)$	64-m at 5 GHz (4' : $S = 4.3$). 7).

G348.5 - 0.0

1010 010		
RA: $17^{h}12^{m}00^{s}$	1-GHz flux/Jy: 10?	Size/arcmin: 10?
Dec: -38° 25′	Spectral index: 0.4?	Type: S?

Radio: Arc, overlapping G348.5+0.1.

References:

Kassim et al. 1991, ApJ, 374, 212. VLA at 333 MHz $(46'' \times 53'')$, 1.4 GHz $(18'' \times 33'')$ and part at 5 GHz $(2''.5 \times 3''.9)$. Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 69'' : S = 10.2)$. Frail et al. 1996, AJ, 111, 1651. OH emission near remnant, including compact sources (masers).

G348.5 + 0.1RA: $17^{h}10^{m}40^{s}$

Dec: $-38^{\circ}29'$

1-GHz flux/Jy: 72 Spectral index: 0.3 CTB 37A Size/arcmin: 15 Type: S

Radio: Shell, poorly define to S and W, overlapping G348.5-0.0 in E.

Distance: HI absorption indicates 10.2 ± 3.5 kpc.

References:

Clark et al. 1975, AuJPA, 37, 75. Molonglo at 408 MHz (3': S = 97). Milne & Dickel 1975, AuJPh, 28, 209. Parkes 64-m at 5 GHz (4'.4: S = 43). Caswell et al. 1975, A&A, 45, 239. Parkes HI absorption. Milne et al. 1979, MNRAS, 188, 437. FIRST at 1415 MHz (0'.8: S > 50) and Parkes 64-m at 14.7 GHz $(2'.2: S = 18 \pm 5)$. Downes 1984, MNRAS, 210, 845. VLA at 1465 MHz $(20'' \times 45'')$. Kassim et al. 1991, ApJ, 374, 212. VLA at 333 MHz $(46'' \times 53'')$, 1.4 GHz $(18'' \times 33'')$ and part at 5 GHz $(2''.5 \times 3''.9)$.

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 69'' : S = 71)$.

${f G348.7}+{f 0.3}$		CTB 37B
RA: $17^{h}10^{m}30^{s}$ Dec: $-38^{\circ}08'$	1-GHz flux/Jy: 26 Spectral index: 0.3	Size/arcmin: 17? Type: S
Radio: Incomplete shell with	faint eastern extensions.	
Distance: HI absorption indic	tates 10.2 ± 3.5 kpc.	
References:		
Clark et al. 1975, AuJPA, 37, 75. M	olonglo at 408 MHz $(3' : S = 34)$.	
Milne & Dickel 1975, AuJPh, 28, 20	9. Parkes 64-m at 5 GHz (4'.4: $S = 32$).	
Caswell et al. 1975, A&A, 45, 239. H	Parkes HI absorption.	
Milno et al 1979 MNRAS 188 427	FIRST at 1415 MHz (0' 8 \cdot S \geq 20) and Parker	$(64 \text{ m of } 147 \text{ CH}_{\pi}(2^{1}2, S - 8 \pm 2))$

Milne et al. 1979, MNRAS, 188, 437. FIRST at 1415 MHz (0'.8 : S > 20) and Parkes 64-m at 14.7 GHz (2'.2 : $S = 8 \pm 3$). Downes 1984, MNRAS, 210, 845. VLA at 1465 MHz (20'' × 45''). Kassim et al. 1991, ApJ, 374, 212. VLA at 333 MHz (46'' × 53'').

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 69'' : S = 33)$.

Frail et al. 1996, AJ, 111, 1651. OH emission near remnant.

 $\begin{array}{c} {\bf G349.2-0.1} \\ {\bf RA:} \ 17^{h}13^{m}50^{s} \end{array}$

Dec: -38°01′

1-GHz flux/Jy: 1.4? Spectral index: ?

Size/arcmin: 9×6 Type: S

Radio: Elongated shell, adjacent to bright HII region. References:

Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz ($43'' \times 70'' : S = 1.6$). Frail *et al.* 1996, AJ, 111, 1651. OH emission near remnant.

G349.7 + 0.2**RA:** $17^{h}14^{m}35^{s}$ 1-GHz flux/Jy: 20Size/arcmin: 2.5×2 **Dec:** $-37^{\circ}23'$ Spectral index: 0.5 Type: S Radio: Incomplete clumpy shell, with enhancement to the S. **Distance:** HI absorption indicates 18.3±4.6 kpc. **R**eferences: Becker & Kundu 1975, AJ, 80, 679. NRAO 140-ft at 10.6 GHz (3'). Caswell et al. 1975, AuJPA, 37, 39. Molonglo at 408 MHz (3': S = 31.0) and Parkes 64-m at 5 GHz (4': S = 9.1), no maps. Caswell et al. 1975, A&A, 45, 239. Parkes HI absorption. Shaver et al. 1985, Nat, 313, 113. VLA at 1.4 GHz $(3''.4 \times 14''.5)$. Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz ($43'' \times 71'' : S = 22$). Frail et al. 1996, AJ, 111, 1651. OH emission near remnant, including compact sources (masers). G350.0 - 1.8**RA:** $17^{h}23^{m}40^{s}$ 1-GHz flux/Jy: 31 Size/arcmin: 30? **Dec:** $-38^{\circ}20'$ Spectral index: 0.5 Type: S? **Radio:** Arc, possibly part of a larger remnant. References: Clark et al. 1975, AuJPA, 37, 1. Molonglo at 408 MHz (3': S = 49.5) and Parkes 64-m at 5 GHz (4': S = 13.6). Milne & Dickel 1975, AuJPh, 28, 209. Parkes 64-m at 5 GHz (4'.4). G351.2 + 0.1**RA**: 17^h19^m05^s 1-GHz flux/Jy: 5? Size/arcmin: 7 **Dec:** $-36^{\circ}08'$ Spectral index: 0.4 Type: C? Has been called G351.3+0.2. Radio: Distorted shell, with possible flat-spectrum core. **R**eferences: Clark et al. 1975, AuJPA, 37, 1. Molonglo at 408 MHz (3': S = 8.1) and Parkes 64-m at 5 GHz (4': S = 3.1). Caswell et al. 1984, PASAu, 5, 227. MOST at 843 MHz $(43'' \times 77'')$ Becker & Helfand 1988, AJ, 95, 883. VLA at 5 GHz (15"), and at 15 GHz of core. Dubner et al. 1993, AJ, 105, 2251. VLA at 1.47 GHz $(32'' \times 36'' : S = 4.8 \pm 0.2)$. Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 73'' : S = 5.5)$. G351.7 + 0.8**RA**: 17^h17^m40^s 1-GHz flux/Jy: 10? Size/arcmin: 18×14 **Dec:** $-35^{\circ}24'$ Spectral index: ? Type: S Radio: Elongated shell, adjacent to bright HII region. Point sources: Pulsar nearby. References: Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 74'' : S = 11)$. G351.9 - 0.9**RA:** $17^{h}25^{m}30^{s}$ **1-GHz** flux/Jy: 1.8? Size/arcmin: 12×9 **Dec:** $-36^{\circ}14'$ Spectral index: ? Type: S Radio: Asymmetric shell. **R**eferences: Whiteoak & Green 1996, A&AS, 118, 329. MOST at 843 MHz $(43'' \times 73'' : S = 2.0)$.

DA. 17ho4moos		
RA: $17 24 20$	1-GHz flux/Jy: 4	Size/arcmin: 8×6
Dec: $-35^{\circ}05'$	Dec: -35°05′ Spectral index: 0.6	
Radio: Distorted shell.		
Kelerences: Clark et al. 1975, AuJPA, 37, 1. Mo Caswell et al. 1983, MNRAS, 203, 59 Dubner et al. 1993, AJ, 105, 2251. V Whiteoak & Green 1996, A&AS, 118	longlo at 408 MHz $(3': S = 9.6)$ and Parkes 64 95. FIRST at 1415 MHz $(1'.1)$. 7LA at 1.47 GHz $(34'': S = 3.4 \pm 0.4)$. 8, 329. MOST at 843 MHz $(43'' \times 75'': S = 4.4)$	4-m at 5 GHz $(4': S = 2.3)$. 4).
G354.1 + 0.1		
RA: $17^{h}27^{m}10^{s}$	1-GHz flux/Jy: ?	Size/arcmin: $15 \times 3?$
Dec: $-33^{\circ}44'$	Spectral index: varies?	Type: C?
Is this a SNR?		
Radio: Elongated N-S.		
Point sources: Pulsar at S tij	p.	
References: Frail et al. 1994, ApJ, 437, 781. VLA	A at 330 MHz (47 ^{$\prime\prime$} × 99 ^{$\prime\prime$}) and 1.4 GHz (8 ^{$\prime\prime$} .8 x	× 21″).
G354.8 - 0.8		
RA: $17^{h}32^{m}40^{s}$	1-GHz flux/Jy: 2.8?	Size/arcmin: 19
Dec: $-33^{\circ}40'$	Spectral index: ?	Type: S
Radio: Distorted shell. References: Whiteoak & Green 1996, A&AS, 11;	8, 329. MOST at 843 MHz (43'' $ imes$ 78'' : $S=3$.:	1).
G355.6 - 0.0		
RA: $17^{h}32^{m}00^{s}$	1-GHz flux/Jy: 3?	Size/arcmin: 6×8
Dec: -32°36′	Spectral index: ?	Ύ Τуре: S
Radio: Well defined shell. References: Gray 1994, MNRAS, 270, 847. MOS	T at 843 MHz (43'' × 80'' : $S = 2.6$).	
G355.9 - 2.5		
${f G355.9-2.5} \ {f RA:}\ 17^{ m h}42^{ m m}35^{ m s}$	1-GHz flux/Jy: 8	Size/arcmin: 13
${f G355.9-2.5}\ {f RA:17^h42^m35^s}\ {f Dec:-33^\circ42'}$	1-GHz flux/Jy: 8 Spectral index: 0.5	Size/arcmin: 13 Type: S
G355.9 – 2.5 RA: 17 ^h 42 ^m 35 ^s Dec: -33°42' Radio: Distorted shell, brighte	1-GHz flux/Jy: 8 Spectral index: 0.5 est to SE.	Size/arcmin: 13 Type: S
G355.9 – 2.5 RA: 17 ^h 42 ^m 35 ^s Dec: -33°42' Radio: Distorted shell, brighte References: Clark et al. 1975, AuJPA, 37, 1. Mo Caswell et al. 1984, PASAu, 5, 227. Dubner et al. 1993, AJ, 105, 2251. V Gray 1994, MNRAS, 270, 836. MOS	1-GHz flux/Jy: 8 Spectral index: 0.5 est to SE. longlo at 408 MHz $(3' : S = 12.3)$ and Parkes 6 MOST at 843 MHz $(43'' \times 77'')$. 'LA at 1.47 GHz $(32'' \times 34'' : S = 5.0 \pm 0.3)$. T at 843 MHz $(43'' \times 77'')$.	Size/arcmin: 13 Type: S 34-m at 5 GHz (4' : <i>S</i> = 3.4).
G355.9 – 2.5 RA: 17 ^h 42 ^m 35 ^s Dec: -33°42' Radio: Distorted shell, brighte References: Clark et al. 1975, AuJPA, 37, 1. Mo Caswell et al. 1984, PASAu, 5, 227. Dubner et al. 1993, AJ, 105, 2251. V Gray 1994, MNRAS, 270, 836. MOS G356.3 – 0.3	1-GHz flux/Jy: 8 Spectral index: 0.5 est to SE. longlo at 408 MHz $(3' : S = 12.3)$ and Parkes 6 MOST at 843 MHz $(43'' \times 77'')$. LA at 1.47 GHz $(32'' \times 34'' : S = 5.0 \pm 0.3)$. T at 843 MHz $(43'' \times 77'')$.	Size/arcmin: 13 Type: S 34-m at 5 GHz (4' : <i>S</i> = 3.4).
G355.9 – 2.5 RA: 17 ^h 42 ^m 35 ^s Dec: -33°42' Radio: Distorted shell, brighte References: Clark et al. 1975, AuJPA, 37, 1. Mo Caswell et al. 1984, PASAu, 5, 227. Dubner et al. 1993, AJ, 105, 2251. V Gray 1994, MNRAS, 270, 836. MOS G356.3 – 0.3 RA: 17 ^h 34 ^m 40 ^s	1-GHz flux/Jy: 8 Spectral index: 0.5 est to SE. longlo at 408 MHz (3': S = 12.3) and Parkes 6 MOST at 843 MHz (43'' × 77''). 'LA at 1.47 GHz (32'' × 34'' : S = 5.0 ± 0.3). T at 843 MHz (43'' × 77''). 1-GHz flux/Jy: 3?	Size/arcmin: 13 Type: S 34-m at 5 GHz (4' : <i>S</i> = 3.4). Size/arcmin: 7 × 11

MSH 17-39

Type: ?

G3	5(6.3	3 —	1		5
----	----	-----	-----	---	--	---

RA: 17^h39^m20^s **Dec:** $-32^{\circ}51'$

1-GHz flux/Jy: 3? Spectral index: ?

Size/arcmin: 15×20 Type: S

Size/arcmin: 3×8 ?

Radio: Double arc.

References: Gray 1994, MNRAS, 270, 847. MOST at 843 MHz $(43'' \times 79'' : S = 2.8)$.

G357.7 - 0.1

RA: $17^{h}37^{m}15^{s}$

Dec: -30°56′

1-GHz flux/Jy: 37 Spectral index: 0.4

Has been suggested that this is not a SNR.

Radio: Multiple arcs and filaments.

Point sources: Peripheral compact source (a compact HII region?).

References:

Caswell et al. 1975, AuJPA, 37, 39. Molonglo at 408 MHz (3': S = 54.2) and Parkes 64-m at 5 GHz (4': S = 18.5).

Milne & Dickel 1975, AuJPh, 28, 209. Parkes 64-m at 5 GHz (4'.4: S = 14.6).

Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6). Caswell et al. 1980, MNRAS, 190, 881. FIRST at 1415 MHz (50").

Weiler & Panagia 1980, A&A, 90, 269. Effelsberg 100-m at 9 GHz (1'.5) (private communication from Baker).

Shaver et al. 1985, Nat, 313, 113. VLA at 1.4 GHz $(3''.8 \times 10''.9)$ and 5 GHz $(12'' \times 26'')$

Becker & Helfand 1985, Nat, 313, 115. VLA at 1.4 GHz and 5 GHz, suggest it is not a SNR, see Helfand & Becker 1985 Nat, 313, 118.

Shaver et al. 1985, A&A, 147, L23. Observations of peripheral compact source.

Caswell et al. 1989, PASAu, 8, 184. MOST at 843 MHz $(43'' \times 83'')$.

Gray 1994, MNRAS, 270, 836. MOST at 843 MHz (43" × 84").

Stewart et al. 1994, ApJ, 432, L39. ATCA at 4.79 and 5.84 GHz (12" × 22") and Effelsberg 100-m at 10.6 GHz (1'), including polarization.

Frail et al. 1996, AJ, 111, 1651. OH emission near remnant, including compact sources (masers).

G357.7 + 0.3

RA: 17^h35^m20^s **Dec:** $-30^{\circ}42'$

1-GHz flux/Jy: 10Spectral index: 0.4? Size/arcmin: 24 Type: S

Radio: Non-thermal shell in complex region.

References:

Reich & Fürst 1984, A&AS, 57, 165. Effelsberg 100-m at 2.7 GHz ($4'.3: S = 7 \pm 1.5$), $S(5000) = 5.5 \pm 1.5$ from surveys. Gray 1994, MNRAS, 270, 836. MOST at 843 MHz (43" × 84").

G359.0 - 0.9

RA: $17^{h}43^{m}35^{s}$ **Dec:** $-30^{\circ}15'$

1-GHz flux/Jy: 23 Spectral index: 0.5 Size/arcmin: 23 Type: S

Radio: Incomplete shell.

References:

Reich et al. 1988, in SNRISM, p293. Summary of parameters. Reich et al. 1990, A&AS, 85, 633. Effelsberg 100-m at 2.7 GHz (4'.3). Gray 1994, MNRAS, 270, 836. MOST at 843 MHz $(43'' \times 86'')$.

G359.1 - 0.5

RA: $17^{h}42^{m}20^{s}$	1-GHz flux/Jy: 14	Size/arcmin: 24		
Dec: $-29^{\circ}56'$	Spectral index: 0.4?	Type: S		

Radio: Non-thermal shell in complex region, crossed by the "snake".

Point sources: Several compact radio sources near centre, OH masers around edge.

References:

Downes et al. 1979, A&AS, 35, 1. From observations by Altenhoff et al. 1979, A&AS, 35, 23. Effelsberg 100-m at 4.9 GHz (2'.6: S = 13).

Reich & Fürst 1984, A&AS, 57, 165. Effelsberg 100-m at 2.7 GHz (4'.3: $S = 10 \pm 1.5$) and 4.8 GHz (2'.4: $S = 8.1 \pm 0.5$). Uchida *et al.* 1992, ApJ, 398, 128. VLA at 1.5 GHz (11'' × 10''), and observations of nearby molecular material.

Uchida et al. 1992, AJ, 104, 1533. VLA at 1.4 GHz.

Gray 1994, MNRAS, 270, 836. MOST at 843 MHz $(43'' \times 85'')$.

Yusef-Zadeh et al. 1995, Sci, 270, 1801. VLA at 1.4 GHz (33" × 31"), and 1.7 GHz for OH survey.

G359.1 + 0.9

RA: $17^{h}36^{m}25^{s}$ **Dec:** -29°09′

1-GHz flux/Jy: 5? Spectral index: ?

Size/arcmin: 11×12 Type: S

Radio: Shell, brightest in E. **R**eferences: Gray 1994, MNRAS, 270, 847. MOST at 843 MHz $(43'' \times 88'' : S = 4.3)$.